• Title/Summary/Keyword: sawdust board

Search Result 42, Processing Time 0.027 seconds

Adiabatic property of plywood wall panel (합판 벽체의 단열성능)

  • 박준철;홍순일
    • Journal of Korea Foresty Energy
    • /
    • v.21 no.2
    • /
    • pp.62-68
    • /
    • 2002
  • Adiabatic property of plywood wall panel was examined to evaluate their thermal conductivities. The amount of heat loss was investigated through overall heat transmission experiment. Styroform and grass wool showed less heat loss. However, yellowsoil board and laminated lumber showed high volume specific heat capacity. When the changes of indoor and outdoor temperature were checked in model house, wall manufactured with styroform and grass wool was affected easily by the changes of outdoor temperature. Yellowsoil, the mixed board of yellowsoil and sawdust, and laminated lumber, which have high volume specific heat capacity, were not affected much. The rates of overall heat transmission were much better in styroform and grasswool, but the adiabatic properties were much higher in yellowsoil board and the mixed board of yellowsoil and sawdust. The results showed that the insulating material can be developed using yellowsoil and wood, which are nature friendly materials.

  • PDF

Bending Strength of Board Manufactured from Sawdust, Rice Husk and Charcoal (톱밥과 왕겨 및 숯을 이용하여 제조한 보드의 휨성능)

  • HWANG, Jung-Woo;OH, Seung-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.49 no.4
    • /
    • pp.315-327
    • /
    • 2021
  • Purpose of this study is reviewing the use method for the sawdust (sawmilling by-product) and rice husk (Agriculture by-product) by adding charcoal, an eco-friendly material. Mixed composite boards were manufactured with those materials with each density and mixing ratio, and bending performance was investigated. When the addition ratio of sawdust, rice husk and charcoal is 50:20:20 and the resin addition ratio is 10%, as the density of the prepared mixed board ranges from 0.5 g/cm3 to 0.7 g/cm3, the bending strength was 0.42~3.24 N/mm2, dynamic modulus of elasticity was 94.5~888.4 N/mm2, and the static modulus of elasticity was in the range of 31.4~220.7 N/mm2. As the density increased, the bending performance increased, indicating that the density had a significant effect on the bending performance. In a board prepared by setting the density of 0.6 g/cm3, the addition ratio of sawdust to 50%, and the addition ratio of rice husk and charcoal at different ratios, the bending performance showed a tendency to decrease as the addition ratio of charcoal increased. The relationship between the addition ratio of rice husk and charcoal, bending strength, resonance frequency, and dynamic and static bending modulus showed a rather low correlation with the values of the coefficient of determination (R2) of 0.4562, 0.4310, 0.4589, and 0.5847, respectively. Thus, we found that the effect of the addition ratio on the bending performance was small.

Change of Surface Temperature and Far-infrared Emissivity in Ceramics Manufactured from a Board Mixed with Sawdust and Mandarin Peel (톱밥·귤박 혼합보드로 제조한 세라믹의 표면온도 변화 및 원적외선방사 특성)

  • Hwang, Jung-Woo;Oh, Seung-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.1
    • /
    • pp.66-79
    • /
    • 2019
  • The aim of the study is to use the by-products sawdust, formed during sawing and mandarin peel which are agricultural by products. The boards were manufactured by mixing the sawdust and mandarin peel at different mixing ratio and density. In terms of changes in surface temperature of ceramics, we could found that the velocity was fast in the early time of heat transfer until 10 minutes and after that the velocity increased but not very fast. At the elapsed time of 30 minutes, the surface temperature of ceramics increased with the carbonization temperature and rate of mandarin peel addition did not influence the surface temperature. Far - infrared emissivity had no constant tendency in rate of mandarin peel addition, it decreased with increase of carbonization temperature.

Mechanical Properties of Woodceramics According to Carbonizing Temperature - Bending, Compression and Hardness -

  • Byeon, Hee-Seop;Ahn, Sang-Yeol;Oh, Seung-Won;Piao, Jin-Ji
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.59-65
    • /
    • 2004
  • This paper reports the mechanical properties of bending, compression and hardness of woodceramics manufactured at different carbonizing temperatures (600℃, 800℃, 1000℃, 1200℃ and 1500℃) in a vacuum sintering furnace using sawdust boards of Pinus densiflora, Pinus koraiensis and Larix kaemferi. The highest values of bending MOR (MORb) were 104 kgf/cm2 (1200℃), 91 kgf/cm2 (1500℃) and 86 kgf/cm2 (1500℃), the highest values of compression strength were 152 kgf/cm2(1200℃)), 160 kgf/cm2(1000℃) and 189 kgf/cm2(1000℃), the highest values of hardness were 2.00 kgf/mm2(800℃), 2.01 kgf/mm2 (1200℃) and 2.28 kgf/mm2 (1000℃) in P. densifora, L. kaemferi and P. koraiensis, respectively. The carbonizing temperature of 600℃ was not proper to the mechanical properties for three kinds of sawdust boards and the highest values of mechanical properties were different from the kinds of mechanical properties and species of sawdust boards. Therefore, it is necessary to manufacture woodceramics at a proper temperature for particular species of sawdust boards to obtain good mechanical properties.

Physical and Mechanical Properties of Board Made from Carbonized Rice Husk (왕겨숯을 이용하여 제조한 보드의 물성)

  • Hwang, Jung-Woo;Oh, Seung-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.1
    • /
    • pp.62-71
    • /
    • 2017
  • This study was investigated on the properties of board made from carbonized rice husk differed in density of board, resin addition ratio and sawdust addition ratio. Water absorption is showed the lowest value to 80.09% when the resin addition ratio of 25%, as the density increased and sawdust addition ratio decreased, the water absorption was decreased. The measured thickness swelling satisfied with the quality standards of KS F 3104, so the feasibility of building interior has been confirmed in the dimensional stability. In case of resin addition ratio of 25%, the internal bond strength was satisfied quality standards of KS F 3104 to $0.244N/mm^2$. With increasing the density, resin and sawdust addition ratio, brinell hardness increased.

Properties of Ceramics from a Board Mixed with Sawdust and Rice Husk - Effect of Percentage of Resin Impregnation and Carbonization Temperature - (톱밥과 왕겨로 제조된 혼합세라믹의 물성 - 수지함침율 및 소성온도의 영향 -)

  • Oh, Seung-Won;Ji, Piao Jin;Jeong, In-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.3 s.131
    • /
    • pp.30-37
    • /
    • 2005
  • This study aimed at offering basic data to develop a new use of sawdust and rice husk. Research investigated the variation of density, weight loss and dimensional decreasing rate by the percentage of resin impregnation and carbonization temperature of ceramics, which were formed by the percentage of resin impregnation of 40~80% and carbonization of $600{\sim}1200^{\circ}C$ with board impregnated with phenolic resin made from sawdust and rice husk. The results of this study were as follows:1) As the percentage of resin impregnation increased, the thickness shrinkage and weight loss were decreased; on the other hand, density and modulus of rupture increased. Meanwhile, the carbonization temperature at $1200^{\circ}C$ showed the highest values, as the density was $0.81g/cm^3$ and the bending strength was $77.9kgf/cm^2$ in the percentage of resin impregnation at 70%. 2) As the carbonization temperature grew higher the linear shrinkage, thickness shrinkage and weight loss increased while the density increased until the carbonization temperature of $1000^{\circ}C$; but then decreased slightly at $1200^{\circ}C$.

Effect of Flame Resistant Treatment on The Sound Absorption Capability of Sawdust-mandarin Peel Composite Particleboard (방염처리가 톱밥-귤박 혼합파티클보드의 흡음성능에 미치는 영향)

  • Kang, Chunwon;Jin, Taiquan;Kang, Ho-Yang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.4
    • /
    • pp.511-517
    • /
    • 2015
  • Sound absorption capability of the flame resistant treated sawdust-mandarin peel composite particleboard was were estimated by two microphone transfer function methods. The weight of flame resistant treated board slightly increased by the treatment. The treatment improved fire retardant performance by decreasing the charred area of flame resistant treated board. Sound absorption capabilities of flame resistant treated sawdust-mandarin peel composite particleboard, in the entire estimated frequency range of 500-6,400 Hz was slightly lower than those of the control specimen. Sound absorption capability of both the control and flame resistant treated sawdust-mandarin peel composite particleboards were higher than that of commercial gypsum boards, being widely used as a sound absorber for ceiling at the estimated frequency.

Manufacturing and Physical Properties of Composite Board with Sawdust and Orange Peels (톱밥과 귤박을 이용한 혼합보드제조 및 물성)

  • Oh, Seung Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.6
    • /
    • pp.528-534
    • /
    • 2013
  • This study was carried out to explore a new application of board and obtain fundamental properties for producing composite board from sawdust and orange peels. As the mixing rate of orange peels increased from 10% to 40%, water absorption, thickness swelling, modulus of rupture and brinell hardness decreased as follows : 94.1%~86.5%, 27.2%~18.0%, $65.1kgf/cm^2{\sim}39.2kgf/cm^2$ and $195.3kgf/cm^2{\sim}180.3kgf/cm^2$, respectively. As the density of board increased from $0.4g/cm^3$ to $0.8g/cm^3$, thickness swelling, modulus of rupture and brinell hardness increased as follows: 6.4%~17.9%, $4.2kgf/cm^2{\sim}96.6kgf/cm^2$ and $40.4kgf/cm^2{\sim}196.2kgf/cm^2$, respectively. But the water absorption decreased from 149.2% to 58.6%.

Mechanical Properties and Density Profile of Ceramics Manufactured from a Board Mixed with Sawdust and Mandarin Peels

  • Jung-Woo HWANG;Seung-Won OH
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.2
    • /
    • pp.98-108
    • /
    • 2023
  • In this study, the boards were manufactured according to the mandarin peels addition rate using sawdust and mandarin orange peel. After that, the mechanical properties and density profile of ceramics prepared by conditions through resin impregnation process and carbonization process were investigated. The bending and compression strengths of ceramics tended to increase as the resin impregnation rate increased. When the resin impregnation rate was 70%, the highest values were 8.58 MPa and 14.77 MPa, respectively. Also, the mechanical properties of ceramics according to carbonization temperature showed the highest values at 1,200℃ for bending strength of 11.09 MPa and compression strength of 17.20 MPa. The bending strength and compression strength according to the mandarin peels addition rate showed the highest values at 8.62 MPa and 14.16 MPa, respectively, when the mandarin orange peel addition rate was 5%. The mechanical properties tended to decrease when the addition rate of mandarin orange was increased. The density profile of ceramics showed a similar tendency to the mechanical properties. It can be seen that the density distribution from the surface layer to the center layer is more uniform as the resin impregnation rate and carbonization temperature increase and the mandarin peels addition rate decreases.

Physical Properties of Ceramics Manufactured from A Boards Mixed with Sawdust and Mandarin Peels (톱밥·귤박 혼합보드로 제조한 세라믹의 물리적 성질)

  • Hwang, Jung-Woo;Oh, Seung-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.3
    • /
    • pp.335-342
    • /
    • 2017
  • This study was carried out to explore a new application of the by-products sawdust, formed during sawing and mandarin peels which are agricultural by-products. The boards were manufactured by mixing the sawdust and mandarin peels at different mixing ratio and density. The boards were then converted to ceramics by various percentage of resin impregnation and at different carbonization temperatures. As the percentage of resin impregnation increased, the weight loss was decreased; on the other hand, density, linear shrinkage and thickness shrinkage increased. As the carbonization temperature increased, the weight loss was increased and linear thickness shrinkage increased to $1000^{\circ}C$ and the subsequent increase was insufficient. As the percentage of mandarin peels addition increased, the weight loss, linear shrinkage and thickness shrinkage was decreased.