• Title/Summary/Keyword: saturation of iron core

Search Result 48, Processing Time 0.028 seconds

Hysteresis Characteristics of a SFCL using a Magnetic Coupling of Coils with an Iron Core of Two Magnetic Paths (두 개의 자기경로 철심을 갖는 코일의 자기결합을 이용한 초전도 전류제한기의 히스테리시스 특성)

  • Lim, Sung-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.12
    • /
    • pp.1073-1077
    • /
    • 2009
  • The iron core, which comprises the superconducting fault current limiter (SFCL) using magnetic coupling of coils, can be operated in the saturation region, especially at the initial fault period. This operation of the iron core in the saturation region deteriorates the fault current limiting operation of the SFCL. To solve the saturation problem of the SFCL using magnetic coupling of coils, the iron core with two magnetic paths, which has an air-gap in one of them, was adopted. In this paper, the hysteresis characteristics of SFCL using magnetic coupling of coils, which were wound in the iron core with two magnetic paths, were analyzed. Through comparative analysis on the hysteresis characteristics of the iron core comprising SFCL, the hysteresis characteristics of the iron core with two magnetic paths were confirmed to be kept in the non-saturation region during the fault period and thus, the effective fault current limiting operation of the SFCL using the magnetic coupling of coils could be performed.

Characteristic Analysis of a Flux-Lock Type SFCL Considering Magnetization Characteristic of Iron Core (철심의 자화특성을 고려한 자속구속형 초전도 사고전류제한기의 특성 분석)

  • Lim, Sung-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.11
    • /
    • pp.995-999
    • /
    • 2007
  • We investigated the characteristics of a flux-lock type superconducting fault current limiter(SFCL) considering magnetization characteristic of iron core. The flux-lock type SFCL, like other types of SFCLs using the iron core, undergoes the saturation of the iron core during the initial fault time. Therefore, if the design to prevent the saturation of the iron core is considered, the effective fault current limiting operation can be achieved. Through the analysis for its equivalent circuit including the magnetization characteristic of the iron core, the limiting impedance of the flux-lock type SFCL was drawn. The magnetization currents and the limited currents of SFCL, which were dependent on the winding direction and the turns' ratio between two coils, were investigated from the short circuit experiment. It was confirmed that their experimental results agreed with the analysis ones.

Analytical Study Considering Both Core Loss Resistance and Magnetic Cross Saturation of Interior Permanent Magnet Synchronous Motors

  • Kim, Young-Kyoun
    • Journal of Magnetics
    • /
    • v.17 no.4
    • /
    • pp.280-284
    • /
    • 2012
  • This paper presents a method for evaluating interior permanent magnet synchronous motor (IPMSM) performance over the entire operation region. Using a d-q axis equivalent circuit model consisting of motor parameters such as the permanent magnetic flux, copper resistance, core loss resistance, and d-q axis inductance, a conventional mathematical model of an IPMSM has been developed. It is well understood that in IPMSMs, magnetic operating conditions cause cross saturation and that the iron loss resistance - upon which core losses depend - changes according to the motor speed; for the sake of convenience, however, d-q axis machine models usually neglect the influence of magnetic cross saturation and assume that the iron loss resistance is constant. This paper proposes an analysis method based on considering a magnetic cross saturation and estimating a core loss resistance that changes with the operating conditions and speed. The proposed method is then verified by means of a comparison between the computed and the experimental results.

Hysteresis Characteristics of Flux-Lock Type Superconducting Fault Current Limiter (자속구속형 고온초전도 사고전류제한기의 히스테리시스 특성)

  • Lim, Sung-Hun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.1
    • /
    • pp.66-70
    • /
    • 2007
  • For the design to prevent the saturation of the iron core and the effective fault current limitation, the analysis for the operation of the flux-lock type superconducting fault current limiter (SFCL) with consideration for the hysteresis characteristics of the iron core is required. In this paper, the hysteresis characteristics of the flux-lock reactor, which is an essential component of the flux-lock type SFCL, were investigated. Under normal condition, the hysteresis loss of the iron core in the flux-lock type SFCL does not happen due to its winding structure. From the equivalent circuit for the flux-lock type SFCL and the fault current limiting experiments, the hysteresis curves could be drawn. From the analysis for both the hysteresis curves and the fault current limiting characteristics due to the number of turns for the 1st and 2nd windings, the increase of the number of turns in the 2nd winding of the flux-lock type SFCL had a role to prevent the iron core from saturation.

Fault Current Limiting and Magnetizing Characteristics of the Autotransformer Type SFCL

  • Park, Min Ki;Lim, Sung Hun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.3
    • /
    • pp.159-162
    • /
    • 2017
  • In designing the autotransformer type superconducting fault-current limiter (SFCL), one must consider that the iron core can be saturated for the SFCL to have effective fault-current limiting operation. In this paper, to examine the saturation of the iron core comprising SFCL during the fault period, the linkage flux and the magnetizing current of the SFCL were derived from the electrical equivalent circuit with the nonlinear exciting branch. By analysis on the linkage flux versus the magnetizing current of the autotransformer type SFCL, calculated from the short-circuit tests, the design condition for the suppression of the iron core's saturation was discussed.

Magnetic Saturation Effect of the Iron Core in Current Transformers Under Lightning Flow

  • Kim, Young Sun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.2
    • /
    • pp.97-102
    • /
    • 2017
  • A current transformer (CT) is a type of sensor that consists of a combination of electric and magnetic circuits, and it measures large ac currents. When a large amount of current flows into the primary winding, the alternating magnetic flux in the iron core induces an electromotive force in the secondary winding. The characteristics of a CT are determined by the iron core design because the iron core is saturated above a certain magnetic flux density. In particular, when a large current, such as a current surge, is input into a CT, the iron core becomes saturated and the induced electromotive force in the secondary winding fluctuates severely. Under these conditions, the CT no longer functions as a sensor. In this study, the characteristics of the secondary winding were investigated using the time-difference finite element method when a current surge was provided as an input. The CT was modeled as a two-dimensional analysis object using constraints, and the saturation characteristics of the iron core were evaluated using the Newton-Rhapson method. The results of the calculation were compared with the experimental data. The results of this study will prove useful in the designs of the iron core and the windings of CTs.

Fault Current Limiting and Hysteresys Characteristics of a SFCL using Magnetic Coupling of Two Coils on the Iron Core with an Air-Gap (공극이 도입된 철심에 코일의 자기결합을 이용한 초전도한류기의 고장전류 제한 및 히스테리시스 특성)

  • Lim, Sung-Hun;Kim, Jae-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.2
    • /
    • pp.137-142
    • /
    • 2011
  • In this paper, the fault current limiting and the hysteresys characteristics of a superconducting fault current limiter (SFCL) using magnetic coupling of two coils on the iron core with an air-gap were analyzed. The introduction of the air-gap in the SFCL with magnetically coupled two coils can suppress the saturation of the iron-core and, on the other hand, make the limiting impedance of the SFCL decreased, which results from the increase of the exciting current. To analyze the effect of the aig-gap on the fault current limiting characteristics of the SFCL, the hysteresys curves of the iron core comprising the SFCL were derived from the short-circuit experiment and the variation in the voltage-current trace of the SFCL during the fault period was analyzed. Through the comparison with the current limiting characteristics of the SFCL without air-gap, the air-gap could be confirmed to contribute to the suppression of the iron core's saturation through the increase of the SFCL's burden from the short-circuit current.

Characteristic of Magnetic Shielding Type High-Tc Superconducting Fault Current Limiter Using Magnetization Curve of Iron Core (철심의 자화곡선을 이용한 자기차폐형 고온초전도 전류제한기 특성)

  • Lee, Jae;Lim, Sung-Hun;Song, Jae-Joo;Kim, Jun-Hyuok;Han, Byoung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.511-514
    • /
    • 2002
  • In this paper, we compared the characteristic of fault current liminting in the magnetic shielding type High-Tc superconducting fault current limiter(FCL) using both Piecewise linear magnetization curve and real magnetization one of iron core. From this paper, the characteristics of fault current limiting in both cases showed many differences. The latter has higher fault current than the former, because the saturation of iron core was reflected and more accumulated during fault. It is expected that the more exact characteristic of magnetic shielding type High-Tc superconducting FCL was obtained in the case of design and modeling.

  • PDF

Analysis on magnetizing characteristics of current limiting reactor using HTSC module

  • Han, Tae Hee;Lim, Sung Hun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.1
    • /
    • pp.15-18
    • /
    • 2018
  • In this paper, the magnetizing characteristics of the current limiting reactor (CLR) using $high-T_C$ superconducting (HTSC) module were analyzed. Since the saturation of iron core comprising the CLR using HTSC module deteriorates its current limiting operation, the design of the CLR using HTSC module considering the magnetizing characteristics is needed. For the analysis on the magnetizing characteristics, the flux linkage and the magnetizing current of this CLR using HTSC module were derived from its electrical equivalent circuit. Through the analysis on the linkage flux versus the magnetizing current, obtained from the short-circuit tests, the suppressing effect of the iron core's saturation was discussed.

Finite Element Analysis of Synchronous Reluctance Motor Considering Iron Core Loss (찰손을 고려한 동기형 릴럭턴스 전동기의 유한요소해석)

  • Lee, Jung-Ho;Kim, Jung-Chul;Hyun, Dong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.55-57
    • /
    • 1998
  • A finite element analysis for a synchronous reluctance motor (SynRM) is presented with emphasis on the effect of saturation and iron losses. Preisachs model, which allows accurate prediction of iron losses, is adopted in this procedure to provide a nonlinear solution. This technique provide significant properties of proposed SynRM under the magnetic saturation and iron losses effect.

  • PDF