• Title/Summary/Keyword: saturation magnetic field of hard axis

Search Result 3, Processing Time 0.019 seconds

Magnetic Properties of Three-layered Ferromagnetic Films with a NiFeCuMo Intermediately Super-soft Magnetic Layer (강자성층 사이에 초연자성 NiFeCuMo 중간층을 삽입한 3층 박막구조의 자기적 특성)

  • Choi, Jong-Gu;Lee, Sang-Suk
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.4
    • /
    • pp.129-133
    • /
    • 2010
  • Two-layered ferromagnetic alloy films (NiFe, CoFe) with a Conetic (NiFeCuMo) intermediately soft magnetic layer of different thickness were investigated to correlate the coercivity values and magnetization process with the strength of saturation field of hard axis. Thickness dependence of the $H_{EC}$ (coercivity of easy axis), $H_{HS}$ (saturation field of hard axis.), and X (susceptibility) of NiFe and NiFeCuMo thin films for the glass/Ta(5 nm)/[CoFe or NiFe(5 nm-t/2)]/NiFeCuMo(t = 0, 4, 6, 8, 10 nm)/[CoFe or NiFe(5 nm-t/2)]/Ta(5 nm) films prepared by the ion beam deposition method was measured. The magnetic properties $H_{EC}$, $H_{HS}$, and X of two-layered ferromagnetic CoFe, NiFe films with a NiFeCuMo intermediately super-soft magnetic layer were strongly depended on the thickness of NiFeCuMo layer. The value of the coercivity and magnetic susceptibility of the NiFeCuMo film decreased by 25% and doubled relative to that of the NiFe film.

Microstructure and Magnetic Properties in Fe-Co-B/M Films for Soft Magnetic Underlayer of Perpendicular Magnetic Recording Media (수직자기기록매체용 Fe-Co-B/M 하지연자성층의 미세결정구조 및 자기특성)

  • 공석현;손인환;금민종;최형욱;박용서;김경환
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.8
    • /
    • pp.888-892
    • /
    • 2004
  • It is necessary to develop soft magnetic layer with high saturation magnetization 4 $\pi{M}_s$ and in-plane magnetic anisotropy field Hk for soft magnetic underlayer of perpendicular magnetic recording media with high signal to noise ratio. Fe-Co-B layer with high 4 $\pi$Ms of about 23 kG deposited on Ni-Fe and Ni-Fe/Si seedlayer exhibited very high in-plane magnetic anisotropy filed Hk of about 280 and 380 Oe, respectively, In-plane XRD studies clarified that the lattice spacing of planes along the easy axis direction was longer than that along the hard axis direction in the Fe-Co-B layers with high Hk. These results indicate that high Hk of Fe-Co-B/Ni-Fe and Fe-Co-B/[Ni-Fe/si] layers were resulted from magnetoelastic anisotropy owing to a residual stress. Moreover, the high Hk in the Fe-Co-B/Ni-Fe layer was maintained until 30$0^{\circ}C$ annealing temperature.

Nano-Granular Co-Fe-AI-O Soft Ferromagnetic Thin Films for GHz Magnetic Device Applications

  • Sohn, Jae-Cheon;Byun, Dong-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.3 s.286
    • /
    • pp.143-147
    • /
    • 2006
  • Co-Fe-Al-O nanogranular thin films were fabricated by RF-magnetron sputtering under an $Ar+O_2$ atmosphere. High resolution transmission electron microscopy revealed that the Co-Fe-Al-O films are composed of bcc (Co, Fe) nanograins finer than 5 nm and an Al-O amorphous phase. A very large electrical resistivity of $374{\mu}{\Omega}cm$ was obtained, together with a large uniaxial anisotropy field of 50 Oe, a hard axis coercivity of 1.25 Oe, and a saturation magnetization of 12.9 kG. The actual part of the relative permeability was measured to be 260 at low frequencies and this value was maintained up to 1.3 GHz. The ferromagnetic resonance frequency was 2.24 GHz. The resulting Co-Fe-Al-O nanogranular thin films with a high electrical resistivity and high resonance frequency are considered to be suitable for GHz magnetic device applications.