• Title/Summary/Keyword: satellite thermal analysis

Search Result 234, Processing Time 0.019 seconds

Development and Performance Validation of Thermal Control Subsystem for Earth Observation Small Satellite Flight Model (지구관측 소형위성 비행모델의 열제어계 개발 및 성능 검증)

  • Chang, Jin-Soo;Jeong, Yun-Hwang;Kim, Byung-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.12
    • /
    • pp.1222-1228
    • /
    • 2008
  • A small satellite, DubaiSat-1 FM(Flight Model), which is based on SI-200 standard bus platform and scheduled to be launched in 2008, is being developed by Satrec Initiative and EIAST(Emirates Institution for Advanced Science and Technology). The TCS(Thermal Control Subsystem) of DubaiSat-1 FM has been designed to mainly utilize passive thermal control in order to minimize power consumption, but the active control method using heaters has been applied to some critical parts. Also, thermal analysis has been performed for DubaiSat-1's mission orbit using a thermal analysis model. The thermal design is modified and optimized to satisfy the design temperature requirements for all parts according to the analysis result. The thermal control performance of DubaiSat-1 FM is verified by thermal vacuum space simulation, consisting of thermal cycling and thermal balance test. Also, to validate the thermal modeling of DubaiSat-1 FM, comparison of test results with analysis has been performed and model calibration has been completed.

Thermal Design on the Backplane of GPS Antenna of Low Earth Orbit Satellite (지구저궤도위성 GPS 안테나 후판 열설계)

  • Hyun, Bum-Seok;Lee, Jang-Joon
    • Aerospace Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.136-140
    • /
    • 2011
  • In this study, thermal model for backplane of GPS antenna in Low Earth Orbit Satellite is updated and orbit thermal analysis is performed. The analysis is focused on the safehold mode of satellite. During the safehold mode, the solar panel is constantly looking to the Sun, and there is not a mission maneuvering. Therefore, antenna backplane receives the maximum heat influx considering the End-Of-Life condition. To maintain the temperature of antenna within allowable limits, radiating tape is applied and its area is determined. Besides, to verify the lowest temperature of the antenna, cold case with Begin-Of-Life analysis is also performed.

Numerical Investigation of On-orbit Thermal Characteristics for Cube Satellite with Passive Attitude Stabilization Method (수동형 자세제어 안정화 방식을 적용한 큐브위성의 열적 특성분석)

  • Oh, Hyun-Ung;Park, Tae-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.5
    • /
    • pp.423-429
    • /
    • 2014
  • Passive attitude stabilization methods using the permanent magnet combined with hysteresis damper and the gravity gradient boom have been widely used for the attitude determination and control of cube satellite, due to its advantage of system simplicity. In this paper, on-orbit thermal characteristics of the cube satellite considering the attitude profiles obtained from the above passive attitude stabilization methods have been investigated through on-orbit thermal analysis. In addition, the effectiveness of the various thermal coatings on the panel for the communication antenna installation has been verified.

Statistical Uncertainty Analysis of Thermal Mass Method for Residual Propellant Estimation (잔여추진제 추정을 위한 열질량법의 통계적 불확실성 분석)

  • Park, Eungsik;Park, BongKyu;Huh, Hwanil
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.12
    • /
    • pp.1116-1123
    • /
    • 2015
  • The lifetime of a geostationary satellite depends on the residual propellant amount and therefore the precise residual propellant gauging is very important for the mitigation of economic loss arised from premature removal of satellite from its orbit, satellites replacement planning, slot management and so on. In this paper, the thermal mass method and its uncertainty are described. The residual propellant analysis of a geostationary satellite is simulated based on the KOREASAT data and the uncertainty of thermal mass method is calculated by using the Monte Carlo method. The results of this study show the importance parameter of estimation residual propellant using the thermal mass method.

Modelling and Preliminary Prediction of Thermal Balance Test for COMS (통신해양기상위성의 열평형 시험 모델 및 예비 예측)

  • Jun, Hyoung-Yoll;Kim, Jung-Hoon;Han, Cho-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.3
    • /
    • pp.403-416
    • /
    • 2009
  • COMS (Communication, Ocean and Meteorological Satellite) is a geostationary satellite and developed by KARl for communication, ocean and meteorological observations. It will be tested under vacuum and very low temperature conditions in order to verify thermal design of COMS. The test will be performed by using KARI large thermal vacuum chamber, which was developed by KARI, and the COMS will be the first flight satellite tested in this chamber. The purposes of thermal balance test are to correlate analytical model used for design evaluation and predicting temperatures, and to verify and adjust thermal control concept. KARI has plan to use heating plates to simulate space hot condition especially for radiator panels of satellite such as north and south panels. They will be controlled from 90 K to 273 K by circulating GN2 and LN2 alternatively according to the test phases, while the main shroud of the vacuum chamber will be under constant temperature, 90 K, during all thermal balance test. This paper presents thermal modelling including test chamber, heating plates and the satellite without solar array wing and Ka-band reflectors and discusses temperature prediction during thermal balance test.

A Study of Temperature Transform Algorithm of Distinguished Grids between Thermal and Structural Mesh for Satellite Design (인공위성 설계를 위한 열-구조 이종 격자 간 온도변환 알고리즘 연구)

  • Kim, Min Ki
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.9
    • /
    • pp.805-813
    • /
    • 2015
  • This paper introduces the development of temperature mapping code between thermal mesh and structural mesh in KARI Satellite Design Software. Generally, temperature distribution of a satellite varies with the time by the space environment of the orbit, so thermal expansion of the structure should be analysed in design of the satellite. For the sake of the coupled thermal structural analysis, an interpolation algorithm between two finite element heterogeneous grids has been proposed by which temperature transfer is successively conducted.

Thermal Vacuum Test and Thermal Analysis for a Qualification Model of Cube-satellite STEP Cube Lab. (큐브위성 STEP Cube Lab.의 임무 탑재체 인증모델의 열진공시험 및 열모델 보정을 통한 궤도 열해석)

  • Kang, Soo-Jin;Ha, Heon-Woo;Han, Sung-Hyun;Seo, Joung-Ki;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.2
    • /
    • pp.156-164
    • /
    • 2016
  • Qualification model(QM) of main payloads including concentrating photovoltaic system using fresnel lens, heating wire cutting type shockless holding and release mechanism, and MEMS-based solid propellant thruster have been developed for the STEP Cube Lab.(Cube Laboratory for Space Technology Experimental Project), which is a pico-class satellite for verification of core space technologies. In this study, we have verified structural safety and functionality of the developed payloads under a qualification temperature range through the QM thermal vacuum test. Additionally, a reliability of thermal model of the payloads has been confirmed by performing a thermal correlation based on the thermal balance test results.

A CONCEPTUAL DESIGN OF RADIATIVE THERMAL CONTROL SYSTEM IN A GEOSTATIONARY SATELLITE OPTICAL PAYLOAD (정지궤도위성 광학탑재체 복사 열제어 시스템 개념 설계)

  • Kim, Jung-Hoon;Jun, Hyoung-Yoll
    • Journal of computational fluids engineering
    • /
    • v.12 no.3
    • /
    • pp.62-68
    • /
    • 2007
  • A conceptual thermal design is performed for the optical payload system of a geostationary satellite. The optical payload considered in this paper is GOCI(Geostationary Ocean Color Imager) of COMS of Korea. The radiative thermal control system is employed in order to expect a small thermal gradient in the telescope structure of GOCl. Two design margins are applied to the dedicated radiator dimensioning, and three kinds of configuration to the heater power sizing. A Monte-Carlo ray tracing method and a network analysis method are utilized to calculate radiative couplings and thermal responses respectively. At the level of conceptual design, sizing thresholds are presented for the radiator and heater on the purpose of determining the mass and power budget of the spacecraft.

Thermal Response and Sensitivity Analysis of Satellite Propulsion Tank (인공위성 추진제 탱크의 열적 반응 및 민감도 해석)

  • Han Cho Young;Lee Kyun Ho;Yu Myoung Jong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.131-136
    • /
    • 2004
  • Thermal control of satellite propellant tank is achieved by patch heaters enabled by thermostat's behavior. It is important to attach the thermostat on the appropriate position of the propellant tank. However its position cannot be given with exact numerics because tank is spherical. Actually the position for thermostat is designated in relevant drawing approximately, therby, the engineer practices depending on his own experience and intuition. The sensitivity analysis for the position of thermostat is performed such that the influence on the thermal behavior and control of tank is examined quantatively. When assembling tank module, the reasonable performance on the thermal control is believed with possible human errors if the uncertainty in the position of thermostat is not quite large.

  • PDF

Design and Analysis of Composite Reflector of High Stable Deployable Antenna for Satellite (위성용 전개형 고안정 반사판 안테나 복합재 주반사판 설계 및 해석)

  • Dong-Geon Kim;Kyung-Rae Koo;Hyun-Guk Kim;Sung-Chan Song;Seong-Cheol Kwon;Jae-Hyuk Lim;Young-Bae Kim
    • Composites Research
    • /
    • v.36 no.3
    • /
    • pp.230-240
    • /
    • 2023
  • The deployable reflector antenna consists of 24 unit main reflectors, and is mounted on a launch vehicle in a folded state. This satellite reaches the operating orbit and the antenna of satellite is deployed, and performs a mission. The deployable reflector antenna has the advantage of reduce the storage volume of payload of launch vehicle, allowing large space structures to be mounted in the limited storage space of the launch vehicle. In this paper, structural analysis was performed on the main reflector constituting the deployable reflector antenna, and through this, the initial conceptual design was performed. Lightweight composite main reflector was designed by applying a carbon fiber composite and honeycomb core. The laminate pattern and shape were selected as design variables and a design that satisfies the operation conditions was derived. Then, the performance of the lightweight composite reflector antenna was analyzed by performing detailed structural analysis on modal analysis, quasi-static, thermal gradient, and dynamic behavior.