• 제목/요약/키워드: satellite thermal analysis

검색결과 234건 처리시간 0.021초

열해석 모델 간략화 및 동적특성에 관한 연구 (A STUDY ON THERMAL MODEL REDUCTION AND DYNAMIC RESPONSE)

  • 전형열;김정훈
    • 한국전산유체공학회지
    • /
    • 제19권4호
    • /
    • pp.37-44
    • /
    • 2014
  • A detailed satellite panel thermal model composed of more than thousands nodes can not be directly integrated into a spacecraft thermal model due to its node size and the limitation of commercial satellite thermal analysis programs. For the integration of the panel into the satellite thermal model, a reduced thermal model having proper accuracy is required. A thermal model reduction method was developed and validated by using a geostationary satellite panel. The temperature differences of main components between the detailed and the reduced thermal model were less than $1^{\circ}C$ in steady state analysis. Also, the dynamic responses of the detailed and the reduced thermal model show very similar trends. Thus, the developed reduction method can be applicable to actual satellite thermal design and analysis with resonable accuracy and convenience.

Thermal Analysis for Design of Propulsion System Employed in LEO Earth Observation Satellite

  • Han C.Y.;Kim J.S.;Lee K.H.;Rhee S.W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2003년도 The Fifth Asian Computational Fluid Dynamics Conference
    • /
    • pp.248-250
    • /
    • 2003
  • Thermal analysis is performed to protect the propulsion system of low-earth-orbit earth observation satellite from unwanted thermal disaster like propellant freezing. To implement thermal design adequately, heater powers for the propulsion system estimated through the thermal analysis are decided. Based on those values anticipated herein, the average power for propulsion system becomes 22.02 watts when the only one redundant catalyst bed heater is turned on. When for the preparation of thruster firing, 25.93 watts of the average power is required. All heaters selected for propulsion components operate to prevent propellant freezing meeting the thermal requirements for the propulsion system with the worst-case average voltage, i.e. 25 volts.

  • PDF

정지궤도위성 위성체패널 열해석 프로그램 개발 (DEVELOPMENT OF THERMAL ANALYSIS PROGRAM FOR GEOSTATIONARY SATELLITE PANEL)

  • 전형열;김정훈;한조영;채종원
    • 한국전산유체공학회지
    • /
    • 제15권3호
    • /
    • pp.66-72
    • /
    • 2010
  • The north and south panel of a geostationary satellite are used for radiator panels to reject internal heat and utilize several heat pipe networks to control the temperatures of units and the main structures of satellite within proper ranges. The design of these panels is very important and essential at the conceptual design and preliminary satellite design stage, so several thousands of nodes or more are utilized in order to perform detailed thermal analysis of panel. Generating a large number of panel nodes takes time and is tedious work because the nodes can be easily changed and updated by locations of units and heat pipes. Also the detailed panel model can not be integrated into spacecraft thermal model due to its node size and limitation of commercial satellite thermal analysis program. Thus development of a program was required to generate a detailed panel model, to perform thermal analysis and to make a reduced panel model for the integration to the satellite thermal model. This paper describes the development and the verification of the panel thermal analysis program with its main modules and functions.

히트 파이프가 장착된 정지궤도 위성 패널 열해석 프로그램 개발 (DEVELOPMENT OF THERMAL ANALYSIS PROGRAM FOR HEAT PIPE INSTALLED PANEL OF GEOSTATIONARY SATELLITE)

  • 전형열;기정훈;한조영;채종원
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.416-421
    • /
    • 2010
  • The north and south panel of a geostationary satellite are used for radiator panels to reject internal heat dissipation of electronics units and utilize several heat pipe networks to control the temperatures of units and the satellite within proper ranges. The design of these panels is very important and essential at the conceptual design and preliminary design stage so several thousands of nodes of more are utilized in order to perform thermal analysis of panel. Generating a large number of nodes(meshes) of the panel takes time and is tedious work because the mesh can be easily changed and updated by locations of units and heat pipes. Also the detailed panel model can not be integrated into spacecraft thermal model due to its node size and limitation of commercial satellite thermal analysis program. Thus development of a program was required in order to generate detailed panel model, to perform thermal analysis and to make a reduced panel model for the integration to the satellite thermal model. This paper describes the development and the verification of panel thermal analysis program with ist main modules and its main functions.

  • PDF

영구자석 안정화 자세제어 방식이 적용된 큐브위성의 열적 특성분석 (Numerical Investigation of On-orbit Thermal Characteristics for Cube Satellite with Permanent Magnet Attitude Stabilization Method)

  • 강수진;정현모;오현웅
    • 항공우주시스템공학회지
    • /
    • 제7권3호
    • /
    • pp.26-32
    • /
    • 2013
  • Passive attitude stabilization method has been widely usde for attitude determination and control of cube satellite due to its advantage of system simplicity. The permanent magnet installed on the cube satellite passively controls the attitude of the satellite such that the satellite is aligned with the earth magnetic field. In this paper, on-orbit thermal behavior of the cube satellite with the permanent magnet attitude stabilization method has been investigated through on-orbit thermal analysis. THe orbit profile obtained from the aforementioned attitude control method has been reflected in the analysis. The analysis results indicate that the thermal design proposed in this study is effective for satisfying the temperature requirements of the commericial mission equipments.

인공위성 열지향오차 해석 (Thermal Pointing Error Analysis of Satellite)

  • 김선원;김진희;이장준;황도순
    • 한국위성정보통신학회논문지
    • /
    • 제2권1호
    • /
    • pp.21-26
    • /
    • 2007
  • 탑재된 광학카메라 또는 영상레이더를 이용하여 지구관측 임무를 수행하는 저궤도 지구관측위성은 지상으로부터 수 백 km 고도의 궤도상에서 극심한 열하중을 받게 된다. 이로 인하여 구조체의 열변형이 발생하게 되고 결과적으로 구조체에 장착된 탑재체가 지상의 원하는 지점을 관측하지 못하는 문제점이 발생하게 된다. 이러한 열변형에 의한 탑재체의 지향방향의 변화를 열지향오차라고 한다. 열지향오차 해석은 열해석, 온도값 변환 및 구조해석의 세 단계로 수행된다. 본 논문에서는 열지향오차 해석을 통하여 위성의 임무수행 가능성을 기술하는것을 목적으로 하였다.

  • PDF

저궤도 위성에서 별센서의 가시성을 위한 Yaw Motion에 따른 열적 영향 고찰 (An Investigation in the Thermal Effect on a Low Earth Orbit Satellite under Yaw Motion for the Visibility of a Star Sensor)

  • 김희경;이장준;현범석
    • 한국항공우주학회지
    • /
    • 제37권7호
    • /
    • pp.709-716
    • /
    • 2009
  • 위성 궤도 자세는 위성 열설계에 영향을 주는 중요한 요소로서, 궤도 운용 자세에 대한 열적 조건을 정확히 파악하는 것을 필요로 한다. 본 연구에서는 저궤도 위성의 yaw motion의 운영 자세에 따른 우주 열환경의 변화와 열설계의 열적 영향을 검토하였다. 본 위성은 고정형의 태양 전지판을 가지고 있기 때문에 태양광 구간 동안에 태양지향(sun-pointing)자세를 유지하고, 위성에 장착되는 별센서인 별추적기의 가시 방향이 심층 우주방향을 향하도록 하기 위하여 위성의 길이 방향을 축으로 일정한 각속도로 회전을 하는 yaw motion을 하도록 운용된다. 이것은 위성이 정밀한 자세 제어의 성능을 발휘할 수 있도록 별추적기가 별의 시야각을 확보하기 위한 것이다. 또한 위성 열설계 측면에서는 이러한 운용을 위한 자세 변화에 따른 열적 영향을 파악하는 것을 필요로 한다. 연구에서는 위성의 열모델에 이러한 궤도 운용 자세를 반영한 후의 궤도 열해석을 통하여 이를 알아보고자 한다.

저궤도 인공위성 열-구조 모델 열진공시험 결과를 활용한 열모델 보정 (The Correlation of Satellite Thermal Mathematical Model using Results of Thermal Vacuum Test on Structure-Thermal Model)

  • 이장준;김희경;현범석
    • 한국항공우주학회지
    • /
    • 제37권9호
    • /
    • pp.916-922
    • /
    • 2009
  • 우주공간에서 임무를 수행하는 인공위성의 열설계는 열모델을 활용한 열해석 결과를 바탕으로 수행되므로, 열모델의 정확성은 매우 중요하며 이것은 보정과정을 통하여 향상된다. 열모델의 보정은 인공위성이 열진공 챔버에 장착된 형상을 모사하는 모델링에서 시작하여 실제형상과 열모델간의 일치성에 대한 검증, 거시적 변수에서부터 미시적 변수에 이르기까지 열모델 변수에 대한 조정 등을 거쳐 주어진 성공 조건을 만족할 때까지 열모델을 지속적으로 수정하는 과정으로 이루어진다. 본 연구에서는 열모델 보정의 성공 기준을 수립하고 인공위성 열-구조 모델 열진공 시험결과를 활용한 열모델 보정을 수행하여 보정 기준을 충족시켰다. 본 연구에서 보정이 완료된 열모델은 저궤도 인공위성 상세 열설계에 적용될 수 있었다.

저궤도위성 광학탑재체의 지상 열진공 시험을 위한 예비 열해석 (Preliminary Thermal Analysis for LEO Satellite Optical Payload's Thermal Vacuum Test)

  • 이종률;허환일;김상호;장수영;이덕규;이승훈;최해진
    • 한국항공우주학회지
    • /
    • 제39권5호
    • /
    • pp.466-473
    • /
    • 2011
  • 인공위성의 열제어는 인공위성이 운용궤도상에서 겪는 고진공, 극한의 온도변화 환경에서 위성 구성품의 온도변화를 허용한계 온도 범위 내에서 유지하는데 목적이 있다. 본 연구에서는 저궤도 관측위성(LEO)의 광학탑재체에 대한 열해석 과정으로 열진공 시험 조건, 열진공 챔버의 형상, 위성 탑재체 내부의 열적 환경을 고려하여 열해석 모델을 구성하고 궤도 조건에 따른 열해석을 수행하였다. 또한 광학탑재체의 지상 열진공 시험 조건에 따른 열해석 수행하여 열진공 시험을 위한 시험조건을 정립하였다.