• Title/Summary/Keyword: satellite school

Search Result 857, Processing Time 0.024 seconds

IDENTIFICATION OF EROSION PRONE FOREST AREA - A REMOTE SENSING AND GIS APPROACH

  • Jayakumar, S.;Lee, Jung-Bin;Enkhbaatar, Lkhagva;Heo, Joon
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2008.10a
    • /
    • pp.251-253
    • /
    • 2008
  • Erosion and landslide cause serious damage to forest areas. As a consequence, partial or complete destruction of vegetation occurs, which leads to many cascading problems. In this study, an attempt has been made to identify the forest areas, which are under different risk categories of erosion and landslide, in part of Eastern Ghats of Tamil Nadu. Relevantthematic maps were generated from satellite data, topographical maps, primary and secondary data and weights to each map were assigned appropriately. Weighted overlay analysis was carried out to identify the erosionprone forest areas. The result of erosion and landslide prone model reveals that 4712 ha(17%) of forest area is under high risk category and 15879 ha(58.65%) isunder medium risk category. The results of spatial modeling would be very much useful to the forest officials and conservationist to plan for effective conservation.

  • PDF

Development of MATLAB GUI Based Software for Monitoring Ionospheric Disturbances

  • Kim, Bu-Gyeom;Kang, Seonho;Han, Deokhwa;Song, Junesol;So, Hyoungmin;Kim, Kap Jin;Kee, Changdon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.8 no.2
    • /
    • pp.69-77
    • /
    • 2019
  • This study introduces MATLAB Graphical User Interface (GUI)-based software to monitor ionospheric disturbances. This software detects ionospheric disturbances using Global Positioning System (GPS) and Global Navigation Satellite System (GLONASS) measurements, and estimates a location of the disturbance source through the detected disturbance. In addition, this software includes a sky plot making function and frequency analysis function through wavelet transform. To evaluate the performance of the developed software, data of 2011 Tohoku earthquake in Japan were analyzed by using the software. The analysis results verified that the ionospheric disturbances were detected through GPS and GLONASS measurements, and the location of the disturbance source was estimated through the detected disturbance.

Estimation of river discharge using satellite-derived flow signals and artificial neural network model: application to imjin river (Satellite-derived flow 시그널 및 인공신경망 모형을 활용한 임진강 유역 유출량 산정)

  • Li, Li;Kim, Hyunglok;Jun, Kyungsoo;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.7
    • /
    • pp.589-597
    • /
    • 2016
  • In this study, we investigated the use of satellite-derived flow (SDF) signals and a data-based model for the estimation of outflow for the river reach where in situ measurements are either completely unavailable or are difficult to access for hydraulic and hydrology analysis such as the upper basin of Imjin River. It has been demonstrated by many studies that the SDF signals can be used as the river width estimates and the correlation between SDF signals and river width is related to the shape of cross sections. To extract the nonlinear relationship between SDF signals and river outflow, Artificial Neural Network (ANN) model with SDF signals as its inputs were applied for the computation of flow discharge at Imjin Bridge located in Imjin River. 15 pixels were considered to extract SDF signals and Partial Mutual Information (PMI) algorithm was applied to identify the most relevant input variables among 150 candidate SDF signals (including 0~10 day lagged observations). The estimated discharges by ANN model were compared with the measured ones at Imjin Bridge gauging station and correlation coefficients of the training and validation were 0.86 and 0.72, respectively. It was found that if the 1 day previous discharge at Imjin bridge is considered as an input variable for ANN model, the correlation coefficients were improved to 0.90 and 0.83, respectively. Based on the results in this study, SDF signals along with some local measured data can play an useful role in river flow estimation and especially in flood forecasting for data-scarce regions as it can simulate the peak discharge and peak time of flood events with satisfactory accuracy.

Construction and estimation of soil moisture site with FDR and COSMIC-ray (SM-FC) sensors for calibration/validation of satellite-based and COSMIC-ray soil moisture products in Sungkyunkwan university, South Korea (위성 토양수분 데이터 및 COSMIC-ray 데이터 보정/검증을 위한 성균관대학교 내 FDR 센서 토양수분 측정 연구(SM-FC) 및 데이터 분석)

  • Kim, Hyunglok;Sunwoo, Wooyeon;Kim, Seongkyun;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.2
    • /
    • pp.133-144
    • /
    • 2016
  • In this study, Frequency Domain Reflectometry (FDR) and COSMIC-ray soil moisture (SM) stations were installed at Sungkyunkwan University in Suwon, South Korea. To provide reliable information about SM, soil property test, time series analysis of measured soil moisture, and comparison of measured SM with satellite-based SM product are conducted. In 2014, six FDR stations were set up for obtaining SM. Each of the stations had four FDR sensors with soil depth from 5 cm to 40 cm at 5~10 cm different intervals. The result showed that study region had heterogeneous soil layer properties such as sand and loamy sand. The measured SM data showed strong coupling with precipitation. Furthermore, they had a high correlation coefficient and a low root mean square deviation (RMSD) as compared to the satellite-based SM products. After verifying the accuracy of the data in 2014, four FDR stations and one COSMIC-ray station were additionally installed to establish the Soil Moisture site with FDR and COSMIC-ray, called SM-FC. COSMIC-ray-based SM had a high correlation coefficient of 0.95 compared with mean SM of FDR stations. From these results, the SM-FC will give a valuable insight for researchers into investigate satellite- and model-based SM validation study in South Korea.

Adjuvant Chemotherapy in Patients with Node-Negative Non-Small Cell Lung Cancer with Satellite Pulmonary Nodules in the Same Lobe

  • Park, Jiyoun;Lee, Junghee;Jeon, Yeong Jeong;Shin, Sumin;Cho, Jong Ho;Kim, Hong-Kwan;Choi, Yong Soo;Kim, Jhingook;Zo, Jae Ill;Shim, Young Mog
    • Journal of Chest Surgery
    • /
    • v.55 no.1
    • /
    • pp.10-19
    • /
    • 2022
  • Background: According to the eighth TNM (tumor-node-metastasis) staging system, the presence of separate tumor nodules in the same lobe is designated as a T3 descriptor. However, it remains unclear whether adjuvant chemotherapy confers survival advantages in this setting. Methods: We retrospectively identified 142 pathologic T3N0M0 patients with additional pulmonary nodules in the same lobe from a single-institutional database from 2004 to 2019. The main outcomes were overall survival and recurrence-free survival. Multivariable Cox regression was used to identify the benefit of adjuvant chemotherapy while adjusting for other variables. Results: Sixty-one patients received adjuvant chemotherapy (adjuvant group) and 81 patients did not receive adjuvant therapy after surgery (surgery-only group). There were no demonstrable differences between the 2 groups regarding hospital mortality and postoperative complications, indicating that treatment selection had not significantly occurred. However, the use of adjuvant chemotherapy was associated with improved 5-year overall survival (70% vs. 59%, p=0.006) and disease-free survival (60% vs. 46%, p=0.040). A multivariable Cox model demonstrated that adjuvant chemotherapy was associated with a survival advantage (adjusted hazard ratio, 0.54; p<0.001). In exploratory analyses of subgroups, the effect of adjuvant chemotherapy seemed to be insufficient in those with small main tumors (<4 cm). Conclusion: Adjuvant chemotherapy was associated with better survival in T3 cancers with an additional tumor nodule in the same lobe. However, the role of adjuvant chemotherapy in patient subgroups with small tumors or those without risk factors should be determined via large studies.

A MTF Compensation for Satellite Image Using L-curve-based Modified Wiener Filter (L-곡선 기반의 Modified Wiener Filter(MWF)를 이용한 위성 영상의 MTF 보상)

  • Jeon, Byung-Il;Kim, Hongrae;Chang, Young Keun
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.5
    • /
    • pp.561-571
    • /
    • 2012
  • The MTF(Modulation Transfer Function) is one of quality assesment factors to evaluate the performance of satellite images. Image restoration is needed for MTF compensation, but it is an ill-posed problem and doesn't have a certain solution. Lots of filters were suggested to solve this problem, such as Inverse Filter(IF), Pseudo Inverse Filter(PIF) and Wiener Filter(WF). The most commonly used filter is a WF, but it has a limitation on distinguishing signal and noise. The L-curve-based Modified Wiener Filter(MWF) is a solution technique using a Tikhonov regularization method. The L-curve is used for estimating an optimal regularization parameter. The image restoration was performed with Dubaisat-1 images for PIF, WF, and MWF. It is found that the image restored with MWF results in more improved MTF by 20.93% and 10.85% than PIF and WF, respectively.

Design of Solar Tracking CanSat (태양위치추적 캔위성의 개발)

  • Jung, In-Jee;Moon, Ji-Hwan;Kim, Min-Soo;Lim, Byoung-Duk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.4
    • /
    • pp.327-334
    • /
    • 2013
  • In August 2012 the first CanSat competition was hosted by the Satellite Research Center of KAIST under auspice of the Ministry of Education, Science and Technology. The present authors team won the first prize in the university session. In this paper the overall procedure of the CanSat project presented from the conceptual design stage to the final launch test. As the compulsory mission CanSat should send GPS data and attitude information to the ground station which in practice was performed via Bluetooth channel. In addition our CanSat is designed to trace the sun for the solar panels supplying electric power of satellite. IMU and servo motors are used for the attitude control in order that the solar sensor of the CanSat is always direct towards the sun. Launching of CanSat was simulated by dropping from a balloon at the height of around 150m via parachute. Launching test results showed that the attitude control of the CanSat and its solar sensing function were successful.

Deforestation Analysis Using Unsupervised Change Detection Based on ITPCA (ITPCA 기반의 무감독 변화탐지 기법을 이용한 산림황폐화 분석)

  • Choi, Jaewan;Park, Honglyun;Park, Nyunghee;Han, Soohee;Song, Jungheon
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_3
    • /
    • pp.1233-1242
    • /
    • 2017
  • In this study, we tried to analyze deforestation due to forest fire by using KOMPSAT satellite imagery. For deforestation analysis, unsupervised change detection algorithm is applied to multitemporal images. Through ITPCA (ITerative Principal Component Analysis) of NDVI (Normalized Difference Vegetation Index) generated from multitemporal satellite images before and after forest fire, changed areas due to deforestation are extracted. In addition, a post-processing method using SRTM (Shuttle Radar Topographic Mission) data is involved in order to minimize the error of change detection. As a result of the experiment using KOMPSAT-2 and 3 images, it was confirmed that changed areas due to deforestation can be efficiently extracted.

Steep plasma density gradient at middle latitudes observed by DMSP and TOPEX during the magnetic storm of 11-12 April 2001

  • Park, Sa-Rah;Kim, Khan-Hyuk;Kil, Hyo-Sub;Jee, Geon-Hwa;Lee, Dong-Hun;Goldstein, J.
    • Bulletin of the Korean Space Science Society
    • /
    • 2011.04a
    • /
    • pp.26.3-27
    • /
    • 2011
  • Formation of a steep plasma density gradient in the middle-latitude ionosphere during geomagnetic storms and the latitudinal migration of its location depending on the storm phase are suggested to be associated with the ionospheric signature of the plasmapause. We test this idea by using the satellite and ground observation data during the 11 April 2001 storm. The locations of the steep plasma density gradient identified by TOPEX/Poseidon (2001 LT) and DMSP (1800 and 2130 LT) satellites coincide with the ionospheric footprints of the plasmapause identified by the IMAGE satellite. This observation may support the dependence of the middle-latitude plasma density gradient location on the plasmapause motion, but does not explain why the steep density gradient whose morphology is largely different from the morphology of the middle-latitude ionization trough during quiet period is formed in association with the plasmapause. The ionospheric disturbances in the total electron content (TEC) maps shows that the steep TEC gradient is formed at the boundary of the positive ionospheric storm in low-middle latitudes and the negative ionospheric storm in middle-high latitudes. We interpret that the thermospheric neutral composition disturbance in the dayside is confined within the middle-high latitude ionospheric convection zone. The neutral composition latitudes and, therefore, the locations of the steep plasma density gradient coincide with the footprints of the plasmapause. The TEC maps show that the appearance of the steep plasma density gradient in the pre-midnight sector during the recovery phase is related to the co-rotation of the gradient that is created during the main phase.

  • PDF

PRECISION IDENTIFICATION OF ACTUATOR DISTURBANCE PARAMETER BY FREQUENCY COMPENSATION (주파수 보정법에 의한 구동기 외란 파라미터 정밀 결정)

  • Lee Hyunho;Cheon Dong-Ik;Oh Hwa-Suk
    • Bulletin of the Korean Space Science Society
    • /
    • 2005.04a
    • /
    • pp.138-142
    • /
    • 2005
  • A reaction wheel, an actuator for satellite attitude control, produces disturbance torque and force as well as its axial control torque. The disturbances have an influence on the pointing stability of high precision satellites. The measurement of disturbances for such a satellite, therefore, is necessary. The wheel's rotation, however, causes the vibration of the table and its vibration induces measurement errors, especially large near the resonance frequency of the Measurement table. For the purpose of overcoming these defects, a calibration method using frequency compensation is suggested in this paper. Disturbance parameters are identified from data examined by frequency compensation. Measurement frequency range can be expanded far higher than the resonance frequency, since the degradation of data accuracy caused by its vibration is well alleviated even in the resonance area.

  • PDF