• 제목/요약/키워드: satellite range

검색결과 762건 처리시간 0.028초

위성항법을 위한 의사거리 생성 시뮬레이터 설계 (Design of Pseudo Range Generation Simulator for Satellite Navigation)

  • 강호영;김동미;이제형;유동희
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2008년도 지능정보 및 응용 학술대회
    • /
    • pp.175-178
    • /
    • 2008
  • 위성항법을 위해 정밀시각정보를 생성하는 시뮬레이터는 GPS의 위성 궤도정보를 생성하는 기능과 위성 궤도 정보를 이용하여 위성의 위치를 생성하는 기능, 위성과 수신기 사이의 실제거리를 생성하는 기능과 위성으로부터 수신기까지 신호가 전파하는 동안에 발생하는 각종 오차 요인들을 모델링하여 실제거리에 적용하는 과정을 제공해야 한다. 또한 다양한 방법으로 적용하기 위해 의사거리는 전세계표준인 RINEX 포맷으로 출력하는 기능을 제공해야 한다. 이에 본 논문에서는 GPS 위성으로부터 임의의 지표상의 사용자까지의 의사거리를 생성하기 위한 시뮬레이터의 설계과정을 제안하고 GPS 위성의 경우를 적용하여 그 결과를 제시한다.

  • PDF

A Substorm Injection Event and the Radiation Belt Structure Observed by Space Radiation Detectors onboard Next Generation Small Satellite-1 (NEXTSat-1)

  • Yoo, Ji-Hyeon;Lee, Dae-Young;Kim, Eojin;Seo, Hoonkyu;Ryu, Kwangsun;Kim, Kyung-Chan;Min, Kyoungwook;Sohn, Jongdae;Lee, Junchan;Seon, Jongho;Kang, Kyung-In;Lee, Seunguk;Park, Jaeheung;Shin, Goo-Hwan;Park, SungOg
    • Journal of Astronomy and Space Sciences
    • /
    • 제38권1호
    • /
    • pp.31-38
    • /
    • 2021
  • In this paper, we present observations of the Space Radiation Detectors (SRDs) onboard the Next Generation Small Satellite-1 (NEXTSat-1) satellite. The SRDs, which are a part of the Instruments for the study of Stable/Storm-time Space (ISSS), consist of the Medium-Energy Particle Detector (MEPD) and the High-Energy Particle Detector (HEPD). The MEPD can detect electrons, ions, and neutrals with energies ranging from 20 to 400 keV, and the HEPD can detect electrons over an energy range from 0.35 to 2 MeV. In this paper, we report an event where particle flux enhancements due to substorm injections are clearly identified in the MEPD A observations at energies of tens of keV. Additionally, we report a specific example observation of the electron distributions over a wide energy range in which we identify electron spatial distributions with energies of tens to hundreds of keV from the MEPD and with energy ranging up to a few MeV from the HEPD in the slot region and outer radiation belts. In addition, for an ~1.5-year period, we confirm that the HEPD successfully observed the well-known outer radiation belt electron flux distributions and their variations in time and L shell in a way consistent with the geomagnetic disturbance levels. Last, we find that the inner edge of the outer radiation belt is mostly coincident with the plasmapause locations in L, somewhat more consistent at subrelativistic energies than at relativistic energies. Based on these example events, we conclude that the SRD observations are of reliable quality, so they are useful for understanding the dynamics of the inner magnetosphere, including substorms and radiation belt variations.

The Ground Checkout Test of OSMI(Ocean Scanning Multispectral Imager) on KOMPSAT-1

  • Yong, Sang-Soon;Shim, Hyung-Sik;Heo, Haeng-Pal;Cho, Young-Min;Oh, Kyoung-Hwan;Woo, Sun-Hee;Paik, Hong-Yul
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 1999년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.375-380
    • /
    • 1999
  • Ocean Scanning Multispectral Imager (OSMI) is a payload on the KOMPSAT satellite to perform worldwide ocean color monitoring for the study of biological oceanography. The instrument images the ocean surface using a wisk-broom motion with a swath width of 800 km and a ground sample distance (GSD) of<1km over the entire field of view (FOV). The instrument is designed to have an on-orbit operation duty cycle of 20% over the mission lifetime of 3 years with the functions of programmable gain/offset and on-board image data compression/storage. The instrument also performs sun and dark calibration for on-board instrument calibration. The OSMI instrument is a multi-spectral imager covering the spectral range from 400nm to 900nm using CCD Focal Plane Array (FPA). The ocean colors are monitored using 6 spectral channels that can be selected via ground commands. KOMPSAT satellite with OSMI was integrated and the satellite level environment tests and instrument aliveness/functional test as well, such as launch environment, on-orbit environment (Thermal/vacuum) and EMl/EMC test were performed at KARI. Test results met the requirements and the OSMI data were collected and analyzed during each test phase. The instrument is launched on the KOMPSAT satellite in the late 1999 and the image is scheduled to start collecting ocean color data in the early 2000 upon completion of on-orbit instrument checkout.

  • PDF

The Ground Checkout Test of OSMI on KOMPSAT-1

  • Yong, Sang-Soon;Shim, Hyung-Sik;Heo, Haeng-Pal;Cho, Young-Min;Oh, Kyoung-Hwan;Woo, Sun-Hee;Paik, Hong-Yul
    • 대한원격탐사학회지
    • /
    • 제15권4호
    • /
    • pp.297-305
    • /
    • 1999
  • Ocean Scanning Multispectral Imager (OSMI) is a payload on the KOMPSAT satellite to perform global ocean color monitoring for the study of biological oceanography. The instrument images the ocean surface using a wisk-broom motion with a swath width of 800km and a ground sample distance (GSD) of < 1km over the entire field of view (FOV). The instrument is designed to have an on-orbit operation duty cycle of 20% over the mission lifetime of 3 years with the functions of programmable gain/offset and on-board image data compression/storage. The instrument also performs sun and dark calibration for on-board instrument calibration. The OSMI instrument is a multi-spectral imager covering the spectral range from 400nm to 900nm using CCD Focal Plane Array (FPA). The ocean colors are monitored using 6 spectral channels that can be selected via ground commands. KOMPSAT satellite with OSMI was integrated and the satellite level environment tests including instrument aliveness/functional test, such as launch environment, on-orbit environment (Thermal/Vacuum) and EMI/EMC test were performed at KARl. Test results met the requirements and the OSMI data were collected and analyzed during each test phase. The instrument is launched on the KOMPSAT satellite on December 21,1999 and is scheduled to start collecting ocean color data in the early 2000 upon completion of on-orbit instrument checkout.

위성 대 위성 통신용 광대역 HTS 안테나 제작 및 특성 해석 (Fabrication and Characterization of Wideband HTS Antennas for Satellite to Satellite Communication)

  • 정동철
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제51권12호
    • /
    • pp.573-577
    • /
    • 2002
  • We designed wideband HTS antennas which consists of two triangle -radiation patches using a $YBa_2Cu_3O_{7-X}$ (YBCO) superconducting thin film. The major limitation of high-Tc superconducting (HTS) microstrip antennas is the narrow bandwidth due to the high Q and thin substrate. Defining bandwidth as the frequency range over which standing wave ratio (SWR) 2:1 or less, HTS antenna bandwidths are typically 0.85 % to 1.1 %. Thus considerable effort has been focused on developing antennas for broadband operation. To calculate input impedance and design of the broadband HTS antennas a moment method technique was used. The HTS antenna fabricated in this work was designed for K-band, which is useful band for satellite to satellite communications. The bandwidth obtained was a significant 6.7 % and the other measured performance of our HTS antenna, including the bandwidth, radiation Pattern, efficiency, standing wave ratio (SWR) and return losses was reported.

위성 대 위성 통신용 광대역 HTS 안테나 제작 및 특성 해석 (Fabrication and Characterization of Wideband HTS Antennas for Satellite to Satellite Communication)

  • 정동철;최명호;황종선;강형곤;한병성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집
    • /
    • pp.523-526
    • /
    • 2002
  • We designed wideband HTS antennas which consists of two triangle-radiation patches using a YBa$_2$Cu$_3$O$\sub$7-x/ (YBCO) superconducting thin film. The major limitation of high-Tc superconducting (HTS) microstrip antennas is the narrow bandwidth due to the high Q and thin substrate. Defining bandwidth as the frequency range over which standing wave ratio (SWR) 2:1 or less, HTS antenna bandwidths are typically 0.85% to 1.1%. Thus considerable effort has been focused on developing antennas for broadband operation. To calculate input impedance and design of the broadband HTS antennas a moment method technique was used. The HTS antenna fabricated in this work was designed for K-band, which is useful band for satellite-to-satellite communications. The bandwidth obtained was a significant 6.7% and the other measured performance of our HTS antenna, including the bandwidth, radiation Pattern, efficiency, standing wave ratio (SWR) and return losses was reported.

  • PDF

Degradation Analysis of User Terminal EIRP and G/T due to Station-Keeping Variation of Stratospheric Platform

  • Ku, Bon-Jun;Ahn, Do-Seob;Baek, Dong-Cheol;Park, Kwang-Ryang;Lee, Seong-Pal
    • ETRI Journal
    • /
    • 제22권1호
    • /
    • pp.12-19
    • /
    • 2000
  • Wireless communication systems using airship have been proposed in worldwide. The airship will be located at the stratosphere about $20{\sim}23\;km$ above the sea level. The position of airship will vary within the station keeping range with time due to the drag of the wind in the stratosphere. When the earth station antenna has a high gain without the tracking function, the antenna performance may be degraded by a small variation of the airship. This means that variation of airship location could result in serious degradation of the system performance. In this paper, degradation in earth station's Equivalent Isotropic Radiated Power (EIRP) and Gain to noise Temperature ratio (G/T) due to the stratospheric platform movements has been derived by calculating the deviation angle of the main beam directions between the earth station and the platform antenna. In this case, the antenna of the earth station has been assumed circular and/or patch array antennas.

  • PDF

저궤도 위성 Receiver의 Threshold측정 시험 결과에 대한 분석 (Analysis about Threshold Measurement Test Result of LEO Satellite Receiver)

  • 조승원;권재욱;최종연;최석원
    • 항공우주기술
    • /
    • 제5권2호
    • /
    • pp.77-84
    • /
    • 2006
  • 저궤도 위성의 시스템 시험에서는 위성의 5 대역 Receiver의 적정 수신 RF 전력 영역을 확인하기 위하여 저궤도 위성의 Receiver Tracking Threshold와 Command Threshold를 측정한다. 본 논문에서는 두 Threshold 측정의 알고리듬을 살펴보고 통합 시스템 시험 (Integrated System Test)에서 수행하였던 결과를 보여준다. 그 후에 Receiver의 성능 이외 에 Threshold 측정결과에 영향을 미칠 수 있는 요소를 알아보고 그에 따른 왜곡된 값을 분석하여 보정을 수행하였다.

  • PDF

Landsat TM data로부터 수질인자 추출을 위한 상대적 대기 보정 방법 (A Relative Atomspheric Correction Methods for Water Quality Factors Extraction from Landsat TM data)

  • 양인태;김응남;최윤관
    • 산업기술연구
    • /
    • 제18권
    • /
    • pp.17-25
    • /
    • 1998
  • Recently, there are a lot of studies to use a satellite image data in order to investigate a simultaneous change of a wide range area as a lake. However, many cases of a water quality research occur as problem when we try to extract the water quality factors from the satellite image data, because of the atmosphere scattering exert as bad influence on a result of analysis. In this study, and attempt was made to select the relative atmospheric correction method for the water quality factors extraction from the satellite image data. And also, the time-series analysis of the water quality factors extraction from the satellite image data. And also, the time-series analysis of the water quality factors was performed by using the multi-temporal image data.

  • PDF

Reconstruction of Buildings from Satellite Image and LIDAR Data

  • Guo, T.;Yasuoka, Y.
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.519-521
    • /
    • 2003
  • Within the paper an approach for the automatic extraction and reconstruction of buildings in urban built-up areas base on fusion of high-resolution satellite image and LIDAR data is presented. The presented data fusion scheme is essentially motivated by the fact that image and range data are quite complementary. Raised urban objects are first segmented from the terrain surface in the LIDAR data by making use of the spectral signature derived from satellite image, afterwards building potential regions are initially detected in a hierarchical scheme. A novel 3D building reconstruction model is also presented based on the assumption that most buildings can be approximately decomposed into polyhedral patches. With the constraints of presented building model, 3D edges are used to generate the hypothesis and follow the verification processes and a subsequent logical processing of the primitive geometric patches leads to 3D reconstruction of buildings with good details of shape. The approach is applied on the test sites and shows a good performance, an evaluation is described as well in the paper.

  • PDF