• Title/Summary/Keyword: satellite positioning technology

Search Result 221, Processing Time 0.029 seconds

A Study on the Design and Implementation of a Position Tracking System using Acceleration-Gyro Sensor Fusion

  • Jin-Gu, Kang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.1
    • /
    • pp.49-54
    • /
    • 2023
  • The Global Positioning System (GPS) was developed for military purposes and developed as it is today by opening civilian signals (GPS L1 frequency C/A signals). The current satellite orbits the earth about twice a day to measure the position, and receives more than 3 satellite signals (initially, 4 to calculate even the time error). The three-dimensional position of the ground receiver is determined using the data from the radio wave departure time to the radio wave Time of Arrival(TOA) of the received satellite signal through trilateration. In the case of navigation using GPS in recent years, a location error of 5 to 10 m usually occurs, and quite a lot of areas, such as apartments, indoors, tunnels, factory areas, and mountainous areas, exist as blind spots or neutralized areas outside the error range of GPS. Therefore, in order to acquire one's own location information in an area where GPS satellite signal reception is impossible, another method should be proposed. In this study, IMU(Inertial Measurement Unit) combined with an acceleration and gyro sensor and a geomagnetic sensor were used to design a system to enable location recognition even in terrain where GPS signal reception is impossible. A method to track the current position by calculating the instantaneous velocity value using a 9-DOF IMU and a geomagnetic sensor was studied, and its feasibility was verified through production and experimentation.

Hierarchical Modulation Scheme for Capacity Enhancement in the Satellite DMB System (위성 DMB에서 채널 용량 향상을 위한 계층변조 방식)

  • Song, Jeong-Ik;Lee, Gyeong-Tak;Son, Seong-Hwan;Kim, Jae-Myeong
    • Journal of Satellite, Information and Communications
    • /
    • v.1 no.2
    • /
    • pp.83-88
    • /
    • 2006
  • Future communication systems are to be designed to support and serve multimedia and multipledata transmission. Nowadays, requirement of mobile subscribers for the various information such as movie, GPS(Global Positioning System) information, news-is increasing significantly. However, due to practical reasons, the capacity and number of capable channels are limited. To solve this problem, a large number of methods and schemes have been proposed and are under research. In this paper, we demonstrate how satellite DMB (Digital Multimedia Broadcasting) system works with hierarchical modulation scheme. By using hierarchical modulation, we can analyze the capacity. Meanwhile, system performance os evaluated and compared to conventional DMB system without using hierarchical modulation.

  • PDF

Active GNSS Antenna Implemented with Two-Stage LNA on High Permittivity Substrate

  • Go, Jong-Gyu;Chung, Jae-Young
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.2004-2010
    • /
    • 2018
  • We propose a small active antenna to receive Global Navigation Satellite System (GNSS) signals, i.e., Global Positioning System (GPS) L1 (1,575MHz) and Russian Global Navigation Satellite System (GLONASS) L1 (1,600 MHz) signals. A two-stage low-noise amplifier (LNA) with more than 27 dB gain is implemented in the bottom layer of a three-layer antenna package. In addition, a hybrid coupler is used to combine signals from pair of proximately coupled orthogonal feeds with $90^{\circ}$ phase difference to achieve the circular polarization (CP) characteristic. Three layers of high permittivity (${\varepsilon}_r=10$) substrates are stacked and effectively integrated to have a small dimension of $64mm{\times}64mm{\times}7.42mm$ (including both circuit and antenna). The reflection coefficient of the fabricated antenna at the target frequency is below -10 dB, the measured antenna gain is above 26 dBic and the measured noise figure is less than 1.4 dB.

Performance Enhancement of Emergency Rescue System using Surface Correlation Technology

  • Shin, Beomju;Lee, Jung Ho;Shin, Donghyun;Yu, Changsu;Kyung, Hankyeol;Lee, Taikjin
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.3
    • /
    • pp.183-189
    • /
    • 2020
  • In emergency rescue situations, the localization accuracy of the rescue requestor is a very important factor in determining the success or failure of the rescue. Indoors where Global Navigation Satellite System (GNSS) is not operated, there is no choice but to use Wi-Fi or LTE signals. However, the performance of the current emergency rescue system utilizing those RF signals is exceedingly low. In this study, the effectiveness of the surface correlation technology using the accumulated signal pattern of RF signals was verified in relation to the emergency localization technology. To validate the proposed system, we configured and tested an emergency rescue scenario in multi-floors building. When the emergency rescue was requested, it was confirmed that the initial localization error was large owing to the short length of the accumulated signal pattern. However, the localization error decreased over time, which eventually led to the accurate location information being delivered to the rescuer.

Target Positioning in Remote Area Using Strip Sensor Modeling of SPOT Imagery (SPOT 위성영상의 스트립 센서모델링을 이용한 비접근지역 위치결정 연구)

  • Kim, Man-Jo;Hwang, Chi-Jung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.155-160
    • /
    • 2012
  • In this paper, a strip modeling method is developed for the acquisition of target positions in remote area and validated using the imagery of SPOT satellite. This method utilizes the parameters given in header files and constructs a camera model without ground control points. In most cases, the root mean squared error of check points is less than pixel size with one ground control point. The model error of reference image is evaluated using ground control points and used to remove the model error of target images acquired along the same satellite orbit, which enables one to calculate target positions in remote area where no ground control points are available.

Implementation of Biosignal Mornitoring System for u-Health (유헬스를 위한 생체신호 모니터링 시스템의 구현)

  • Kim, Kyung Ho;Park, Ji Ho;Park, Young Sik;Hwang, Yu Min;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.2
    • /
    • pp.80-84
    • /
    • 2014
  • As an integrated technology with IT and biomedical sciences, U-health offers various healthcare services without time and space limit. In order to make a proper diagnosis, doctors need two key technologies: biosignal measurement and high reliability communication technologies. In this paper, we introduce an implementation process of a bio signal system with using an electrocardiography(ECG) sensor, video, global positioning system(GPS), communication module and micro controller unit(MCU).

Performance Analysis of GPS and QZSS Orbit Determination using Pseudo Ranges and Precise Dynamic Model (의사거리 관측값과 정밀동역학모델을 이용한 GPS와 QZSS 궤도결정 성능 분석)

  • Beomsoo Kim;Jeongrae Kim;Sungchun Bu;Chulsoo Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.6
    • /
    • pp.404-411
    • /
    • 2022
  • The main function in operating the satellite navigation system is to accurately determine the orbit of the navigation satellite and transmit it as a navigation message. In this study, we developed software to determine the orbit of a navigation satellite by combining an extended Kalman filter and an accurate dynamic model. Global positioning system (GPS) and quasi-zenith satellite system (QZSS) orbit determination was performed using international gnss system (IGS) ground station observations and user range error (URE), a key performance indicator of the navigation system, was calculated by comparison with IGS precise ephemeris. When estimating the clock error mounted on the navigation satellite, the radial orbital error and the clock error have a high inverse correlation, which cancel each other out, and the standard deviations of the URE of GPS and QZSS are small namely 1.99 m and 3.47 m, respectively. Instead of estimating the clock error of the navigation satellite, the orbit was determined by replacing the clock error of the navigation message with a modeled value, and the regional correlation with URE and the effect of the ground station arrangement were analyzed.

Real-time LSTM Prediction of RTS Correction for PPP by a Low-cost Positioning Device (저가형 측위장치에 RTS 보정정보의 실시간 LSTM 예측 기능 구현을 통한 PPP)

  • Kim, Beomsoo;Kim, Mingyu;Kim, Jeongrae;Bu, Sungchun;Lee, Chulsoo
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.2
    • /
    • pp.119-124
    • /
    • 2022
  • The international gnss service (IGS) provides real-time service (RTS) orbit and clock correction applicable to the broadcast ephemeris of GNSS satellites. However, since the RTS correction cannot be received if the Internet connection is lost, the RTS correction should be predicted and used when a signal interruption occurs in order to perform stable precise point positioning (PPP). In this paper, PPP was performed by predicting orbit and clock correction using a long short-term memory (LSTM) algorithm in real-time during the signal loss. The prediction performance was analyzed by implementing the LSTM algorithm in RPI (raspberry pi), the processing speed of which is not high. Compared to the polynomial prediction model, LSTM showed excellent performance in long-term prediction.

A Study on Dynamic Safety Navigation Envelopes Considering a Ship's Position Uncertainty

  • Pyo-Woong Son;Youngki Kim;Tae Hyun Fang;Kiyeol Seo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.3
    • /
    • pp.289-294
    • /
    • 2023
  • As technologies such as cameras, Laser Imaging, Detection, and Ranging (LiDAR), and Global Navigation Satellite Systems (GNSS) become more sophisticated and common, their use in autonomous driving technologies is being explored in various fields. In the maritime area, technologies related to collision avoidance between ships are being developed to evaluate and avoid the risk of collision between ships by setting various scenarios. However, the position of each vessel used in the process of developing collision avoidance technology between vessels uses data obtained through GNSS, and may include a position error of 10 m or more depending on the situation. In this paper, a study on the dynamic safety navigation range including the positional inaccuracy of the ship is conducted. By combining the concept of the protection level obtained using GNSS raw data with a conventional safe navigation range, a safer navigation range can be calculated for dynamic navigation. The calculated range is verified using data obtained while sailing in an actual sea environment.