• Title/Summary/Keyword: satellite operations and control

Search Result 66, Processing Time 0.025 seconds

Variable Length Pseudo Noise (PN) Ranging System for Satellite Multiple Missions (위성 다중임무 수행을 위한 가변길이 의사 잡음 레인징 시스템)

  • Jeong, Jinwoo;Kim, Sanggoo;Yoon, Dongweon;Lim, Won-Gyu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.12
    • /
    • pp.14-21
    • /
    • 2013
  • In satellite operations and space exploration missions, a ranging is one of the most essential technologies to get its navigational information of space probes. Recently, the importance of cross-support between space agencies is increasing for more fine performance of space mission. For cross-support, mutually compatible ranging system between space agencies is recommended. For these reasons, the consultative committee for space data systems (CCSDS) recommends pseudo noise (PN) ranging as a digital standard ranging system. The length of PN sequence in CCSDS standard is proper for deep space missions, however, it is too long to use for ranging in near earth missions. In this paper, we propose Variable Length PN sequence schemes suitable for ranging of near earth satellites, such as low-earth orbit (LEO), medium-earth orbit (MEO) and Geostationary orbit (GEO). Therefore we propose variable length PN sequence ranging system including CCSDS standard for multiple missions.

Short Periodicities in Latitudinal Variation of Sunspots

  • Kim, Bang-Yeop;Chang, Heon-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.2
    • /
    • pp.103-108
    • /
    • 2011
  • The latitudinal variation of sunspots appearing during the period from 1874 to 2009 has been studied in terms of centerof-latitude (COL). The butterfly diagram has been used to study the evolution of the magnetic field and the dynamics at the bottom of the solar convection zone. Short-term periodicities have been of particular interest, in that they are somehow related to the structure and dynamics of the solar interior. We thus have focused our investigation on shortterm periodicities. We first calculated COL by averaging the latitude of sunspots with the weight function in area. Then, we analyzed the time series of COL using the wavelet transform technique. We found that a periodicity of ~5 years is the most dominant feature in the time series of COL, with the exception of the ~11 year solar cycle itself. This periodicity can be easily understood by considering small humps between the minima in the area-weighted butterfly diagram. However, we find that periodicities of ~1.3 (0.064), ~1.5 (0.056), or ~1.8 (0.046) years ($\frac{1}{month}$), month ), which have been previously suggested as evidence of links between the changing structure of the sunspot zone and the tachocline rotation rate oscillations, are insignificant and inconsistent. We therefore conclude that the only existing short-term periodicity is of ~5 years, and that periodicities of ~1.3, ~1.5, or ~1.8 years are likely to be artifacts due to random noise of small sunspots.

Alternating Sunspot Area and Hilbert Transform Analysis

  • Kim, Bang-Yeop;Chang, Heon-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.4
    • /
    • pp.261-265
    • /
    • 2011
  • We investigate the sunspot area data spanning from solar cycles 1 (March 1755) to 23 (December 2010) in time domain. For this purpose, we employ the Hilbert transform analysis method, which is used in the field of information theory. One of the most important advantages of this method is that it enables the simultaneous study of associations between the amplitude and the phase in various timescales. In this pilot study, we adopt the alternating sunspot area as a function of time, known as Bracewell transformation. We first calculate the instantaneous amplitude and the instantaneous phase. As a result, we confirm a ~22-year periodic behavior in the instantaneous amplitude. We also find that a behavior of the instantaneous amplitude with longer periodicities than the ~22-year periodicity can also be seen, though it is not as straightforward as the obvious ~22-year periodic behavior revealed by the method currently proposed. In addition to these, we note that the phase difference apparently correlates with the instantaneous amplitude. On the other hand, however, we cannot see any obvious association of the instantaneous frequency and the instantaneous amplitude. We conclude by briefly discussing the current status of development of an algorithm for the solar activity forecast based on the method presented, as this work is a part of that larger project.

Papers : Feasibility Study on Attitude Control of Spacecraft Using Pulsed Plasma Thrusters (논문 : 플라즈마 펄스 추력기를 이용한 인공위성 자세제어 기법 연구)

  • Ji, Hyo-Seon;Lee, Ho-Il;Lee, Hun-Gu;Tak, Min-Je
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.3
    • /
    • pp.46-56
    • /
    • 2002
  • In this paper, the feasibility of the attitude control of a spacecraft using pulsed plasma thrusters(PPTs) is studied. The PPT consumes less propellant mass requied for the orbit management or attitude control owing to its high specific impulse characteristics, compared with traditional gas propulsion system. The PPT is expected to be highly adequete for the missions requiring long-duration operations because it has relatively long operation time and easy implementation. The feasibility of the PPT for attitude control of a small satellite system is addressed through realistic missions. The classical PD controller and a fuzzy logic controller are tested, and fuel saving fuzzy logic controller is then proposed for more flexible mission performance.

A study of thrust modeling of bi-propellant rocket engine (이원 추진제 로켓 엔진의 추력 모델링 연구)

  • Jeong,Hae-Seung;Kim,Yu;Ham,Mi-Suk;Park,Eung-Sik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.8
    • /
    • pp.85-90
    • /
    • 2003
  • To control spacecraft including satellite, we should understand precisely the performance of propulsion system and the program logic with appropriate format for satellite operations. In this study, the thruster performance functions was generated by using the best curve fitting for performance data from bi-propellant thrusters. Detailed thruster performance data are, in general, company proprietary information, therefore real firing tests were performed to understand the basic characteristics of the performance curve. Experimental rocket motor utilize liquid oxygen and kerosine as propellant and designed average thrust was 100 pound.

Efforts against Cybersecurity Attack of Space Systems

  • Jin-Keun Hong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.4
    • /
    • pp.437-445
    • /
    • 2023
  • A space system refers to a network of sensors, ground systems, and space-craft operating in space. The security of space systems relies on information systems and networks that support the design, launch, and operation of space missions. Characteristics of space operations, including command and control (C2) between space-craft (including satellites) and ground communication, also depend on wireless frequency and communication channels. Attackers can potentially engage in malicious activities such as destruction, disruption, and degradation of systems, networks, communication channels, and space operations. These malicious cyber activities include sensor spoofing, system damage, denial of service attacks, jamming of unauthorized commands, and injection of malicious code. Such activities ultimately lead to a decrease in the lifespan and functionality of space systems, and may result in damage to space-craft and, lead to loss of control. The Cybersecurity Adversarial Tactics, Techniques, and Common Knowledge (ATT&CK) matrix, proposed by Massachusetts Institute of Technology Research and Engineering (MITRE), consists of the following stages: Reconnaissance, Resource Development, Initial Access, Execution, Persistence, Privilege Escalation, Defense Evasion, Credential Access, Discovery, Lateral Movement, Collection, Command & Control, Exfiltration, and Impact. This paper identifies cybersecurity activities in space systems and satellite navigation systems through the National Institute of Standards and Technology (NIST)'s standard documents, former U.S. President Trump's executive orders, and presents risk management activities. This paper also explores cybersecurity's tactics attack techniques within the context of space systems (space-craft) by referencing the Sparta ATT&CK Matrix. In this paper, security threats in space systems analyzed, focusing on the cybersecurity attack tactics, techniques, and countermeasures of space-craft presented by Space Attack Research and Tactic Analysis (SPARTA). Through this study, cybersecurity attack tactics, techniques, and countermeasures existing in space-craft are identified, and an understanding of the direction of application in the design and implementation of safe small satellites is provided.

A Study on the Trends of the FAA's NextGen (FAA의 차세대 항공운항(NexGen) 동향)

  • Kim, You gwang
    • Journal of Aerospace System Engineering
    • /
    • v.6 no.3
    • /
    • pp.19-23
    • /
    • 2012
  • "The FAA's Next Generation Air Transportation System" is a comprehensive overhaul of U.S National Airspace System to make air travel more convenient and dependable, while ensuring the flight is as safe, secure and hassle-free as possible. At its most basic level, NextGen represents an evolution from a ground-based system of air traffic control to a satellite-based system of air traffic management. This evolution is vital to meeting future demand, and to avoiding gridlock in the sky and at U.S airports. NextGen will open worldwide's skies to continued growth and increased safety while reducing aviation's environmental impact.

The Circuit Design and Analysis of the Digital Delay-Lock Loop in GPS Receiver System (GPS 수신 시스템에서 디지탈 지연동기 루프 회로 설계 및 분석)

  • 금홍식;정은택;이상곤;권태환;유흥균
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.8
    • /
    • pp.1464-1474
    • /
    • 1994
  • GPS(Global Positioning System)is a satellite-based navigation system that we can survey where we are, anywhere and anytime. In this paper, delay-lock loop of the receiver which detects the navigation data is theoretically analyzed, and designed using the digital logic circuit. Also logic operations for the synchronization are analyzed. The designed system consists of the correlator which correlates the received C/A code and the generated C/A code in the receiver, the C/A code generator which generates C/A code of selected satellite, and the direct digital clock syntheizer which generates the clock of the C/A code generator to control the C/A code phase and clock rate. From the analyses results of the proposed digital delay-lock loop system, the system has the detection propertied over 90% when its input signal power is above-113.98dB. The influence of input signal variation of digital delay loop, which is the input of A/D converter, is investigated and the performance is analyzed with the variation of threshold level via the computer simulation. The logic simulation results show that the designed system detects precisely the GPS navigation data.

  • PDF

Home Screen Adaptive Next Generation Broadcasting Service using MSA-ABR (MSA-ABR을 이용한 홈 스크린 적응형 차세대 방송 서비스 연구)

  • Mariappan, Vinayagam;Lee, Minwoo;Lee, Seungyoun;Lee, Junghoon;Lee, Juyoung;Lim, Yunsik;Cha, Jaesang
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.3
    • /
    • pp.37-42
    • /
    • 2016
  • In this paper, in today's highly complex video and broadcast operations, broadcasters are constantly challenged to reliably deliver low-latency, high-quality video to multiscreen audiences on-air and online. The Adaptive Bit Rate (ABR) protocols enable internet video to a wide range of multiscreen devices. However, video quality is often marginal and would prove unacceptable for valued linear broadcast content delivered to the Big Screen today. The Media information processing technology advances in ABR enables service providers to take control and offer quality managed linear video services to ALL screens in the home, including the Big Screen, with a single unified IP Video infrastructure. The New Multiscreen-Assisted ABR (MSA-ABR) delivery management system proposed using Cloud based multicast-assisted ABR for a broadcast facility that performs routing of contribution content and online publishing services within a virtual, centralized cloud infrastructure.

Simulator Design and Performance Analysis of Link-K Based Relative Navigation System (한국형전술데이터링크(Link-K) 기반 상대항법 시스템의 시뮬레이터 설계 및 성능분석)

  • Lee, Ju Hyun;Lee, Jin Hyuk;Choi, Heon Ho;Choi, Hyogi;Park, Chansik;Lee, Sang Jeong;Lee, Seung Chan
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.6
    • /
    • pp.528-538
    • /
    • 2016
  • In this paper, an extend kalman filter based relative navigation algorithm is proposed for Link-K based relative navigation. Link-K is a tactical data link system for joint operation capability upgrade of ROK forces. Link-K is inter-operable with Link-16 and transmit and received information of operations and target. In Link-K communication channel, PPLI message including transmitter position and TOA measurement can be used for relative navigation. Therefore Link-K based relative navigation system can be operated. In this paper, software based simulations were carried out for operational feasibility test and performance verification as error factors of proposed Link-K based relative navigation system.