• 제목/요약/키워드: satellite operation

검색결과 888건 처리시간 0.031초

Analysis of Tropospheric Carbon Monoxide over East Asia

  • Lee, S.H.;Choi, G.H.;Lim, H.S.;Lee, J.H.
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.615-617
    • /
    • 2003
  • Carbon monoxide (CO) is one of the important trace gases because its concentration in the troposphere directly influences the concentrations of tropospheric hydroxyl (OH), which controls the lifetimes of tropospheric trace gases. CO traces the transport of global and regional pollutants from industrial activities and large scale biomass burning. The distributions of CO were analyzed using the MOPITT data for East Asia, which were compared with the ozone distributions. In general, seasonal CO variations are characterized by a peak in the spring, which decrease in the summer. The monthly average for CO shows a similar profile to that for O$_3$. This fact clearly indicates that the high concentration of CO in the spring is possibly due to one of two causes: the photochemical production of CO in the troposphere, or the transport of the CO into East Asia. The seasonal cycles for CO and O$_3$ in East Asia are extensively influenced by the seasonal exchanges of different air mass types due to the Asian monsoon. The continental air masses contain high concentrations of O$_3$ and CO, due to the higher continental background concentrations, and sometimes to the contribution from regional pollution. In summer this transport pattern is reversed, where the Pacific marine air masses that prevail over Korea bring low concentrations of CO and O$_3$, which tend to give the apparent summer minimums.

  • PDF

Energy Balance and Power Performance Analysis for Satellite in Low Earth Orbit

  • Jang, Sung-Soo;Kim, Sung-Hoon;Lee, Sang-Ryool;Choi, Jae-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • 제27권3호
    • /
    • pp.253-262
    • /
    • 2010
  • The electrical power system (EPS) of Korean satellites in low-earth-orbit is designed to achieve energy balance based on a one-orbit mission scenario. This means that the battery has to be fully charged at the end of a one-orbit mission. To provide the maximum solar array (SA) power generation, the peak power tracking (PPT) method has been developed for a spacecraft power system. The PPT is operated by a software algorithm, which tracks the peak power of the SA and ensures the battery is fully charged in one orbit. The EPS should be designed to avoid the stress of electronics in order to handle the main bus power from the SA power. This paper summarizes the results of energy balance to achieve optimal power sizing and the actual trend analysis of EPS performance in orbit. It describes the results of required power for the satellite operation in the worst power conditions at the end-of-life, the methods and input data used in the energy balance, and the case study of energy balance analyses for the normal operation in orbit. Both 10:35 AM and 10:50 AM crossing times are considered, so the power performance in each case is analyzed with the satellite roll maneuver according to the payload operation concept. In addition, the data transmission to the Korea Ground Station during eclipse is investigated at the local-time-ascending-node of 11:00 AM to assess the greatest battery depth-of-discharge in normal operation.

Analysis of Tropospheric Carbon Monoxide in the Northeast Asia from MOPITT

  • Lee, Sang-Hee;Choi, Gi-Hyuk;Lim, Hyo-Suk;Lee, Joo-Hee
    • 대한원격탐사학회지
    • /
    • 제19권3호
    • /
    • pp.217-221
    • /
    • 2003
  • The Measurement of Pollution in the Troposphere (MOPITT) instrument is an eight-channel gas correlation radiometer that launched on the Earth Observing System (EOS) Terra spacecraft in 1999. Its main objectives are to measure carbon monoxide (CO) and methane (CH4) concentrations in the troposphere. This study analyzes tropospheric carbon monoxide distributions using MOPITT data and compare with ozone distributions in Northeast Asia. In general, seasonal CO variations are characterized by a peak in spring and decrease in summer. Also, this study revealed that the seasonal cycles of CO are maximum in spring and minimum in summer with average concentrations ranging from 118ppbv to 170ppbv. The monthly average of CO shows a similar profile to those of O3. This fact clearly indicates that the high concentration of CO in spring is caused by two possible causes: the photochemical CO production in the troposphere, or the transport of the CO in the northeast Asia. The CO and $O_3$ seasonal cycles in the Northeast Asia are influenced extensively by the seasonal exchange of the different types of air mass due to the Asian monsoon. The continental air masses contain high concentrations of $O_3$ and CO due to higher continental background concentrations and sometimes due to the contribution of regional pollution. In summer the transport pattern is reversed. The Pacific marine air masses prevail over Korea, so that the marine air masses bring low concentrations of CO and $O_3$, which tend to give the apparent minimum in summer.

Operational Concept of the NEXTSat-1 for Science Mission and Space Core Technology Verification

  • Shin, Goo-Hwan;Chae, Jang-Soo;Lee, Sang-Hyun;Min, Kyung-Wook;Sohn, Jong-Dae;Jeong, Woong-Seob;Moon, Bong-Gon
    • Journal of Astronomy and Space Sciences
    • /
    • 제31권1호
    • /
    • pp.67-72
    • /
    • 2014
  • The next generation small satellite-1 (NEXTSat-1) program has been kicked off in 2012, and it will be launched in 2016 for the science missions and the verification of space core technologies. The payloads for these science missions are the Instrument for the Study of Space Storms (ISSS) and NIR Imaging Spectrometer for Star formation history (NISS). The ISSS and the NISS have been developed by Korea Advanced Institute of Science and Technology (KAIST) and Korea Astronomy and Space science Institute (KASI) respectively. The ISSS detects plasma densities and particle fluxes of 10 MeV energy range near the Earth and the NISS uses spectrometer. In order to verify the spacecraft core technologies in the space, the total of 7 space core technologies (SCT) will be applied to the NEXTSat-1 for space verification and those are under development. Thus, the operation modes for the ISSS and the NISS for space science missions and 7 SCTs for technology missions are analyzed for the required operation time during the NEXTSat-1's mission life time of 2 years. In this paper, the operational concept of the NEXTSat-1's science missions as well as the verification of space core technologies are presented considering constraints of volume, mass, and power after launch.

Study on the Preliminary Design of ARGO-M Operation System

  • Seo, Yoon-Kyung;Lim, Hyung-Chul;Rew, Dong-Young;Jo, Jung-Hyun;Park, Jong-Uk;Park, Eun-Seo;Park, Jang-Hyun
    • Journal of Astronomy and Space Sciences
    • /
    • 제27권4호
    • /
    • pp.393-400
    • /
    • 2010
  • Korea Astronomy and Space Science Institute has been developing one mobile satellite laser ranging system named as accurate ranging system for geodetic observation-mobile (ARGO-M). Preliminary design of ARGO-M operation system (AOS) which is one of the ARGO-M subsystems was completed in 2009. Preliminary design results are applied to the following development phase by performing detailed design with analysis of pre-defined requirements and analysis of the derived specifications. This paper addresses the preliminary design of the whole AOS. The design results in operation and control part which is a key part in the operation system are described in detail. Analysis results of the interface between operation-supporting hardware and the control computer are summarized, which is necessary in defining the requirements for the operation-supporting hardware. Results of this study are expected to be used in the critical design phase to finalize the design process.

Bhumipol Dam Operation Improvement via smart system for the Thor Tong Daeng Irrigation Project, Ping River Basin, Thailand

  • Koontanakulvong, Sucharit;Long, Tran Thanh;Van, Tuan Pham
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2019년도 학술발표회
    • /
    • pp.164-175
    • /
    • 2019
  • The Tor Tong Daeng Irrigation Project with the irrigation area of 61,400 hectares is located in the Ping Basin of the Upper Central Plain of Thailand where farmers depended on both surface water and groundwater. In the drought year, water storage in the Bhumipol Dam is inadequate to allocate water for agriculture, and caused water deficit in many irrigation projects. Farmers need to find extra sources of water such as water from farm pond or groundwater as a supplement. The operation of Bhumipol Dam and irrigation demand estimation are vital for irrigation water allocation to help solve water shortage issue in the irrigation project. The study aims to determine the smart dam operation system to mitigate water shortage in this irrigation project via introduction of machine learning to improve dam operation and irrigation demand estimation via soil moisture estimation from satellite images. Via ANN technique application, the inflows to the dam are generated from the upstream rain gauge stations using past 10 years daily rainfall data. The input vectors for ANN model are identified base on regression and principal component analysis. The structure of ANN (length of training data, the type of activation functions, the number of hidden nodes and training methods) is determined from the statistics performance between measurements and ANN outputs. On the other hands, the irrigation demand will be estimated by using satellite images, LANDSAT. The Enhanced Vegetation Index (EVI) and Temperature Vegetation Dryness Index (TVDI) values are estimated from the plant growth stage and soil moisture. The values are calibrated and verified with the field plant growth stages and soil moisture data in the year 2017-2018. The irrigation demand in the irrigation project is then estimated from the plant growth stage and soil moisture in the area. With the estimated dam inflow and irrigation demand, the dam operation will manage the water release in the better manner compared with the past operational data. The results show how smart system concept was applied and improve dam operation by using inflow estimation from ANN technique combining with irrigation demand estimation from satellite images when compared with the past operation data which is an initial step to develop the smart dam operation system in Thailand.

  • PDF

큐브위성 STEP Cube Lab.의 지상국 시스템 설계 (Design of Ground Station System for CubeSat STEP Cube Lab.)

  • 전영현;채봉건;정현모;전성용;오현웅
    • 항공우주시스템공학회지
    • /
    • 제6권4호
    • /
    • pp.34-39
    • /
    • 2012
  • CubeSats classified as pico-class satellite require a ground station to track the satellite, transmit a command, and receive an on-orbit data such as SOH (State-of-Health) and mission data according to the operation plan. For this, ground station system has to be properly designed to perform a communication to with the satellite with enough up- and down-link budgets. In this study, a conceptual design of the ground station has been performed for the CubeSat named as STEP Cube Lab. (Cube Laboratory for Space Technology Experimental Project). The paper includes a ground station hardware interface design, link budget analysis and a ground station software realization. In addition, the operation plan of the ground station has been established considering the STEP Cube Lab. mission requirements.

위성 기반 항공 탐색구조시스템의 개념과 구성 기술 (Concept and Technologies of Satellite-based Search and Rescue System for Aviation)

  • 정도희;김장환;강자영;강영식
    • 한국항공운항학회지
    • /
    • 제13권4호
    • /
    • pp.100-110
    • /
    • 2005
  • The worldwide satellite system for search and rescue has been in operation since 1982 and has assisted in the rescue of thousands of lives in distress. Aviators, mariners and land users being equipped with distress beacons are capable of transmitting distress signals to the satellites in emergency situations anywhere in the world. This paper describes the configuration of the search and rescue satellite system, principles of its operation, and how the system is utilized to process the distress events. Also, this paper points out the importance of development of technologies of user equipment and proposes an experimental program for technology development using domestic satellites.

  • PDF

KOMPSAT-2 Fault and Recovery Management

  • Baek, Myung-Jin;Lee, Na-Young;Keum, Jung-Hoon
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제3권2호
    • /
    • pp.31-39
    • /
    • 2002
  • In this paper, KOMPSAT-2 on-board fault and ground recovery management design is addressesed in terms of hardware and software components which provide failure detection and spacecraft safing for anomalies which threaten spacecraft survival. It also includes ground real time up-commanding operation to recover the system safely. KOMPSAT-2 spacecraft fault and recovery management is designed such that the subsequent system configuration due to system initialization is initiated and controlled by processors. This paper will show that KOMPSAT-2 has a new design feature of CPU SEU mitigation for the possible upsets in the processor CPUs as a part of on-board fault management design. Recovery management of processor switching has two different ways: gang switching and individual switching. This paper will show that the difficulties of using multiple-processor system can be managed by proper design implementation and flight operation.

Analysis of the Results for the Operation of a GPS Jammer Localization System

  • Lim, Deok Won;Chun, Sebum;Heo, Moon Beom
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제6권1호
    • /
    • pp.9-15
    • /
    • 2017
  • In this paper, results of a jammer detection and localization system operation are given. The system consists of receiver stations, a central tracking station, and a monitoring station and it was developed by our institute in 2014. Through real-time tests, it is confirmed that the developed system has an ability to estimate the location of interference sources with an accuracy of 50 m (CEP) even they was 10 km away. After verification, this system was installed in Incheon International Airport and operating results are being monitored by the airport and our institute continuously. In this year, there were some events that jamming signals were received from North Korea, so the data were analyzed and given here.