• Title/Summary/Keyword: satellite data processing

Search Result 579, Processing Time 0.028 seconds

Performance analysis on the geometric correction algorithms using GCPs - polynomial warping and full camera modelling algorithm

  • Shin, Dong-Seok;Lee, Young-Ran
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.252-256
    • /
    • 1998
  • Accurate mapping of satellite images is one of the most important Parts in many remote sensing applications. Since the position and the attitude of a satellite during image acquisition cannot be determined accurately enough, it is normal to have several hundred meters' ground-mapping errors in the systematically corrected images. The users which require a pixel-level or a sub-pixel level mapping accuracy for high-resolution satellite images must use a number of Ground Control Points (GCPs). In this paper, the performance of two geometric correction algorithms is tested and compared. One is the polynomial warping algorithm which is simple and popular enough to be implemented in most of the commercial satellite image processing software. The other is full camera modelling algorithm using Physical orbit-sensor-Earth geometry which is used in satellite image data receiving, pre-processing and distribution stations. Several criteria were considered for the performance analysis : ultimate correction accuracy, GCP representatibility, number of GCPs required, convergence speed, sensitiveness to inaccurate GCPs, usefulness of the correction results. This paper focuses on the usefulness of the precision correction algorithm for regular image pre-processing operations. This means that not only final correction accuracy but also the number of GCPs and their spatial distribution required for an image correction are important factors. Both correction algorithms were implemented and will be used for the precision correction of KITSAT-3 images.

  • PDF

Establishment of Geometric Correction Data using LANDSAT Satellite Images over the Korean Peninsular (한반도지역 LANDSAT 위성영상의 기하보정 데이터 구축)

  • Yoon, Geun-Won;Park, Jeong-Ho;Chae, Gee-Ju;Park, Jong-Hyun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.6 no.1
    • /
    • pp.98-106
    • /
    • 2003
  • Because satellite images have the advantage of high resolution, multi-spectral, revisit and wide swath characteristics, it is increased to utilize satellite image and get information little by little in nowadays. In order to utilize remote sensed images effectively, it is necessary to process satellite images through many processing steps. Among them, geometric correction is essential step for satellite image processing. In this study, we constructed geometric correction data using LANDSAT satellite images. First, we extracted GCPs from maps and constructed database over the Korean peninsular. Second, LANDSAT satellite images, 165 scenes were corrected geometrically using GCP database. Finally, we made 7 mosaic images by means of geometric correction images over Korean peninsular. We think that constructed geometric correction data will be used for many application fields as basic data.

  • PDF

Introduction to Simulation Activity for CMDPS Evaluation Using Radiative Transfer Model

  • Shin, In-Chul;Chung, Chu-Yong;Ahn, Myoung-Hwan;Ou, Mi-Lim
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.282-285
    • /
    • 2007
  • Satellite observed brightness temperature simulation using a radiative transfer model (here after, RTM) is useful for various fields, for example sensor design and channel selection by using theoretically calculated radiance data, development of satellite data processing algorithm and algorithm parameter determination before launch. This study is focused on elaborating the simulation procedure, and analyzing of difference between observed and modelled clear sky brightness temperatures. For the CMDPS (COMS Meteorological Data Processing System) development, the simulated clear sky brightness temperatures are used to determine whether the corresponding pixels are cloud-contaminated in cloud mask algorithm as a reference data. Also it provides important information for calibrating satellite observed radiances. Meanwhile, simulated brightness temperatures of COMS channels plan to be used for assessing the CMDPS performance test. For these applications, the RTM requires fast calculation and high accuracy. The simulated clear sky brightness temperatures are compared with those of MTSAT-1R observation to assess the model performance and the quality of the observation. The results show that there is good agreement in the ocean mostly, while in the land disagreement is partially found due to surface characteristics such as land surface temperature, surface vegetation, terrain effect, and so on.

  • PDF

RESEARCH OF COMMUNICATION SCHEDULING BETWEEN COMPUTER I/O AND S/W FOR ACQUISITION OF SATELLITE SENSORED DATA

  • Koo, Cheol-Hea;Park, Su-Hyun;Kang, Soo-Yeon;Yang, Koon-Ho;Choi, Sung-Bong
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.196-199
    • /
    • 2006
  • Various communication mechanisms have been developed to acquire a meaningful data from sensors. The key requirement during the sensor data acquisition is determinism and reduction of time dependency. It is a fundermental level of satellite data management for controlling satellite operation software data acquisition from sensors or subsystem. Satellite operation software has various software modules to be operated in addition to data acquisition. Therefore, unnecessary time delay shall be minimized to perform the data acquisition. As the result, interrupt method might be prefered than polling method because the former can decrease the restriction of design during implementation of data acquisition logic. The possible problems while using interrupt method like as interrupt latency caused by delaying of interrupt processing time are analyzed. In this paper, communication mechanism which can be used to interface with satellite computer and subsidary subsystem by using interrupt is presented. As well, time dependency between software scheduling and data acquisition is analyzed.

  • PDF

Definition and Generation of Level 0 Product for KOMPSAT-2

  • Shin, Ji-Hyeon;Kim, Moon-Gyu;Park, Sung-Og
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.810-814
    • /
    • 2002
  • According to the image level definition for KOMPSAT-2 in KOMPSAT-2 Ground Station Specification, the level 0 is frame formatted, unprocessed data at full resolution; any and all communications artifacts (e.g., synchronization frames, communications headers) removed. The level 0 is used for two purposes: 1) exchange of imagery between image receiving & processing element (IRPE), and 2) image transfer from the Receiving & Archiving Subsystem to Search & Processing Subsystem. On-board processing of imagery data of KOMPSAT-2 includes JPEG-like compression and encryption besides conventional CCSDS packetization. The encryption is used to secure imagery data from any intervention during downlink and compression allows real-time downlink of image data reducing data rate produced from the camera. While developing ground receiving system for KOMPSAT-2, it was necessarily to define level 0 products. In this paper, we will suggest level 0 product definition for KOMPSAT-2 and explain reasons of the decisions made. The key factor used while defining the level 0 products is the efficiency of whole ground receiving system. The latter half of the paper will explain the implementation of software that generates level 0 products. The necessary steps to produce level 0 products will be explained, and the performance achieved will be presented.

  • PDF

Automated Image Receiving and Processing System for Landsat 7

  • Park, Sung-Og;Kim, Moon-Gyu;Kim, Tae-Jung;Ji-Hyeon, Shin;Choi, Myung-jin;Park, Jeong-Hyun
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.573-577
    • /
    • 2002
  • The Landsat Program is the longest running enterprise for acquisition of imagery of the Earth from space. The first Landsat satellite was launched in 1972 and the most recent, Landsat 7, was launched on April 15, 1999. The Landsat satellites have acquired millions of images. The Landsat 7 receiving station is installed at more than 25 sites and will be installed in Korea. This paper will address the work being carried out for the development of image receiving and processing system for the Landsat 7 image data, which will be used at ground station of Landsat 7 in Korea.

  • PDF

INTRODUCTION OF THE SIMC PROJECT

  • Chae, Gee-Ju;Cho, Seong-Ik;Park, Jong-Hyun;Jo, Kwan-Bok
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.356-359
    • /
    • 2006
  • The high prices and lack of information for satellite images prevent researchers from studying remote sensing and most non-professional people can't have the simple and easy solutions for the manipulation of satellite images. 'Satellite Imagery Information Management Center'(SIMC) project which is promoted by ETRI (Electronics and Telecommunications Research Institute) from 2002 to 2005 in Korea have the purpose to provide the satellite images freely to the public domain and the solutions for the above mentioned problems. Our project have the following five systems; Data Acquisition System, Data Preservation System, Integrated Solution System, Technology Development System, Operation Plan System. Data Acquisition System collects the satellite images such as LANDSAT, IKONOS, etc. Data Preservation System consists of database which registers the diverse satellite images. Integrated Solution System gives the user of public domain for the web service which search, order and transfer the satellite images. Technology Development System has the many processing technologies for the satellite images. Finally, the Operation Plan system has the role to plan the future of our SIMC project. In this paper, we will give the result of SIMC Project for each five systems during the fast four years from 2002 to 2005.

  • PDF

Software Framework and System Architecture Design of Satellite Image Processing System Utilizing "Algorithm Componentification", a Building Block (위성영상처리 알고리즘 컴포넌트화를 활용한 소프트웨어 프레임워크 및 시스템 구조 설계)

  • Bang, SangHo;Jung, SangMin;Kim, ByoungGil;SaKong, YoungBo;Jung, YongJoo;Jang, Jae-Dong;Oh, Hyun-Jong
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.3
    • /
    • pp.109-115
    • /
    • 2014
  • This paper suggest meteorological satellite processing software's structure that reduces time and efforts of modification/upgrade. This structure's key feature is "algorithm component" that works within framework and eventually to a complete Meteorological satellite processing system. Most of existing Meteorological satellite system is designed around specific function and data sets which limits range of modification and upgrade. In addition, re-use of current algorithms become difficult although re-use of similar algorithm is the case in many occasions. This inefficiency can be resolved by designing a new framework as a result of detail analysis of collected requirements. A new framework and system architecture has been designed. In addition, operational flow of Satellite image processing framework has been described.