• Title/Summary/Keyword: satellite and terrestrial

Search Result 271, Processing Time 0.028 seconds

Interference Mitigation Techniques for Satellite Downlink in Satellite and Terrestrial Integrated System (위성/지상 겸용망에서 위성 다운링크 수신 단말 간섭 완화 기법)

  • Kang, Kunseok;Hong, Tae Chul;Kim, Hee Wook;Ku, Bon-Jun
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.4
    • /
    • pp.81-88
    • /
    • 2013
  • The satellite 2.1 GHz frequency bands, 1980-2010 MHz and 2170-2200MHz are allocated for mobile satellite service including satellite IMT, while it does not preclude the use of these bands for mobile services. The concept of an integrated satellite/terrestrial network has been introduced in worldwide because the terrestrial use in these bands adjacent to existing terrestrial IMT bands is attractive to provide mobile broadband services. The integrated satellite/terrestrial infrastructure with a high degree of spectrum utilization efficiency has the ability to provide both multimedia broadband services and public protection and disaster relief solutions. In addition, it is required to consider interference issues between the terrestrial and satellite components in order to reuse the same frequency band to both satellite and terrestrial component. This paper analyzes the interference for satellite downlink in the satellite/terrestrial integrated system and presents the interference mitigation techniques for satellite mobile earth station interfered by terrestrial base stations.

Analysis on Satellite Uplink Interference for Satellite/Terrestrial Integrated System (위성/지상 겸용망에서 위성 업링크 간섭 분석)

  • Kang, Kunseok;Hong, Tae Chul;Kim, Hee Wook;Ku, Bon-Jun;Chang, Dae-Ig
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.1
    • /
    • pp.107-114
    • /
    • 2014
  • The satellite 2.1 GHz frequency bands, 1980-2010 MHz and 2170-2200MHz are allocated for mobile satellite service including satellite IMT, while it does not preclude the use of these bands for mobile services. The concept of an integrated satellite/terrestrial network has been introduced in worldwide because the terrestrial use in these bands adjacent to existing terrestrial IMT bands is attractive to provide mobile broadband services. The integrated satellite/terrestrial infrastructure with a high degree of spectrum utilization efficiency has the ability to provide both multimedia broadband services and public protection and disaster relief solutions. In addition, it is required to consider interference issues between the terrestrial and satellite components in order to reuse the same frequency band to both satellite and terrestrial component. This paper analyzes the interference for satellite uplink in the satellite/terrestrial integrated system and the interference reduction scheme for satellite uplink interfered by terrestrial user equipment.

Interference-Limited Dynamic Resource Management for an Integrated Satellite/Terrestrial System

  • Park, Unhee;Kim, Hee Wook;Oh, Dae Sub;Ku, Bon-Jun
    • ETRI Journal
    • /
    • v.36 no.4
    • /
    • pp.519-527
    • /
    • 2014
  • An integrated multi-beam satellite and multi-cell terrestrial system is an attractive means for highly efficient communication due to the fact that the two components (satellite and terrestrial) make the most of each other's resources. In this paper, a terrestrial component reuses a satellite's resources under the control of the satellite's network management system. This allows the resource allocation for the satellite and terrestrial components to be coordinated to optimize spectral efficiency and increase overall system capacity. In such a system, the satellite resources reused in the terrestrial component may bring about severe interference, which is one of the main factors affecting system capacity. Under this consideration, the objective of this paper is to achieve an optimized resource allocation in both components in such a way as to minimize any resulting inter-component interference. The objective of the proposed scheme is to mitigate this inter-component interference by optimizing the total transmission power - the result of which can lead to an increase in capacity. The simulation results in this paper illustrate that the proposed scheme affords a more energy-efficient system to be implemented, compared to a conventional power management scheme, by allocating the bandwidth uniformly regardless of the amount of interference or traffic demand.

The Random Access Procedure for Satellite Radio Interface (위성 무선 인터페이스를 위한 임의접속 절차)

  • Nam, Seung-Hyun;Kim, Hee-Wook;Hong, Tae-Chul;Kang, Kun-Seok;Ku, Bon-Jun;Ahn, Do-Seob
    • Journal of Satellite, Information and Communications
    • /
    • v.5 no.2
    • /
    • pp.14-18
    • /
    • 2010
  • The future of communication systems is expected to combine with the terrestrial and satellite networks. A commonality between wireless interfaces is important consideration for cost of user equipment in the integrated satellite and the terrestrial system. Because IMT-Advanced system take into account LTE based on the terrestrial system for the next generation of communication, a study of the LTE-based satellite system is especially required. A frame of the existing terrestrial wireless networks is designed to use for a random access up to the maximum cell radius of 100 km. However, the random access scheme for the terrestrial system cannot be used in the satellite system, because the satellite systems generally have large coverage than the terrestrial system. Therefore, we propose that the efficient random access procedure to reduce latency and complexity for the satellite system maintaining commonality with the terrestrial system in this paper.

ITU-R Study on Frequency Sharing for Mobile Satellite Services (ITU-R의 이동위성업무 주파수 공유 연구 현황)

  • B.J. Ku;D.S. Oh
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.1
    • /
    • pp.55-64
    • /
    • 2023
  • Recently, preparations for 6G have led to the increasing interest in integrated or hybrid communication networks considering low-orbit satellite communication networks with terrestrial mobile communication networks. In addition, the demand for frequency allocation for new mobile services from low-orbit small satellites to provide global internet of things (IoT) services is increasing. The operation of such satellites and terrestrial mobile communication networks may inevitably cause interference in adjacent bands and the same band frequency between satellites and terrestrial systems. Focusing on the results of the recent ITU-R WP4C meeting, this study introduces the current status of frequency sharing and interference issues between satellites and terrestrial systems, and frequency allocation issues for new mobile satellite operations. Coexistence and compatibility studies with terrestrial IMT in L band and 2.6 GHz band, operated by Inmassat and India, respectively, and a new frequency allocation study (WRC-23 AI 1.18) are carried out to reflect satellite IoT demand. For the L band, technical requirements have been developed for emission from IMT devices at 1,492 MHz to 1,518 MHz to bands above 1,518 MHz. Related studies in the 2 GHz and 2.6 GHz bands are not discussed due to lack of contributions at the recent meeting. In particular, concerning the WRC-23 agenda 1.18 study on the new frequency allocation method of narrowband mobile satellite work in the Region 1 candidate band 2,010 MHz to 2,025 MHz, Region 2 candidate bands 1,695 MHz to 1,710 MHz, 3,300 MHz to 3,315 MHz, and 3,385 MHz to 3,400 MHz, ITU-R results show no new frequency allocation to narrow mobile satellite services. Given the expected various collaborations between satellites and the terrestrial component are in the future, interference issues between terrestrial IMT and mobile satellite services are similarly expected to continuously increase. Therefore, participation in related studies at ITU-R WP4C and active response to protect terrestrial IMT are necessary to protect domestic radio resources and secure additional frequencies reflecting satellite service use plans.

End-to-End Soft QoS Approach for IMS-based Integrated Satellite/Terrestrial Network Architecture

  • Chowdhury, Mostafa Zaman;Jang, Yeong-Min
    • Journal of Satellite, Information and Communications
    • /
    • v.2 no.2
    • /
    • pp.85-91
    • /
    • 2007
  • The satellite networks provide global coverage. The integration of terrestrial networks with a satellite network is the most attractive approach to develop a global communication system. The IP Multimedia Subsystem (IMS) is intended to be the system that will merge the internet with the telecom world. A user with a dual-mode terminal can access both the satellite network and terrestrial network. The seamless handoff between two networks and a user's QoS level is the major issue concerning this integration. In this paper, we propose IMS-based satellite/terrestrial integrated network architecture for a global communication system. Based on the proposed architecture, an inter-network handoff and end-to-end soft QoS procedure is discussed. Our proposed soft QoS scheme is also analyzed to calculate the number of rejected calls.

  • PDF

Exact Performance Analysis of AF Based Hybrid Satellite-Terrestrial Relay Network with Co-Channel Interference

  • Javed, Umer;He, Di;Liu, Peilin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.9
    • /
    • pp.3412-3431
    • /
    • 2015
  • This paper considers the effect of co-channel interference on hybrid satellite-terrestrial relay network. In particular, we investigate the problem of amplify-and-forward (AF) relaying in hybrid satellite-terrestrial link, where the relay is interfered by multiple co-channel interferers. The direct link between satellite and terrestrial destination is not available due to masking by surroundings. The destination node can only receive signals from satellite with the assistance of a relay node situated at ground. The satellite-relay link is assumed to follow the shadowed Rice fading, while the channels of interferer-relay and relay-destination links experience Nakagami-m fading. For the considered AF relaying scheme, we first derive the analytical expression for the moment generating function (MGF) of the output signal-to-interference-plus-noise ratio (SINR). Then, we use the obtained MGF to derive the average symbol error rate (SER) of the considered scenario for M-ary phase shift keying (M-PSK) constellation under these generalized fading channels.

Desing and Verification of Satellite B-ISDN Signalling Protocol (위성 B-ISDN 신호 프로토콜의 설계 및 검증)

  • Park, Seok-Cheon;Choe, Dong-Yeong;Gang, Seong-Yong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.7
    • /
    • pp.1909-1918
    • /
    • 1999
  • The terrestrial/satellite hybrid network may replace or supply the terrestrial network in some areas or certain applications. For example, it may play a major role in global B-ISDN or in certain areas where the deployment of optical cable is not feasible, especially at the early stage of implementing terrestrial B-ISDN. Furthermore, it can play an important role in the development of B-ISDN due to their features of flexible wide coverage, independent of ground distances and geographical constraints, multiple access and multipoint broadcast. Also, satellite have the capability to supply terrestrial B-ISDN/ATM with flexible links for access networks as well as trunk networks. This paper describes the design and verification of the interworking protocol between terrestrial B-ISDN뭉 satellite network. For the verification, the designed interworking protocol is modeled by Petri-net and the model is analyzed by reachability tree.

  • PDF

Dynamic Routing Interworking Method for Integrating Terrestrial Wireless Backbone Network and Satellite Communications System (지상 무선 백본망과 위성 통신망 통합을 위한 동적 라우팅 연동 방안)

  • Choi, Jaewon;Jo, Byung Gak;Kim, Ki Young;Park, KyoungYoul;Lee, Ju Hyung;Han, Joo Hee;Han, Yeesoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.645-653
    • /
    • 2016
  • The terrestrial wireless backbone network and satellite communications system have been independently developed depending on their own purposes and operational concepts, which results in different characteristics in terms of network architecture and routing protocol operation. In this paper, we propose a method for structurally integrating them in consideration of routing mechanism in an autonomous system. Our approach is that the routers of satellite network operate the OSPF in PTP mode on their interfaces connected to the routers of terrestrial wireless backbone network with grid connectivity, whereas the OSPF in satellite network whose topology is of hub-spoke type runs in NBMA mode. We perform some simulations to verify that the satellite communications system can be integrated and interwork with the terrestrial wireless backbone network by our proposed approach. From simulation results, it is also found that the increases of network convergence time and routing overhead are acceptable.

Cooperative Transmission Scheme for Mobile Satellite Broadcasting Systems (이동 위성 방송 시스템을 위한 협력적 전송 기법 연구)

  • Ahn, Do-Seob;Park, Dong-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.9
    • /
    • pp.890-899
    • /
    • 2009
  • One of major services for the next generation mobile satellite system will be multimedia broadcasting and multi-casting service(MBMS). An integrated satellite and terrestrial network can be considered to provide those services seamlessly and cooperatively. This paper presents efficient cooperative transmission architectures for integrated satellite and terrestrial network. First, an integrated satellite and terrestrial system architectures is introduced, and several cooperative transmission architectures for the integrated system are derived. Extensive performance simulation results reveal that the proposed architectures can improve the system performance and make an efficient transmission.