• Title/Summary/Keyword: satellite Ka-band Communication Payload

Search Result 37, Processing Time 0.039 seconds

COMMUNICATION PAYLOAD INTERFACE DESIGN OF GEO SATELLITE (정지궤도위성 통신탑재체 접속설계)

  • Choi, Jae-Dong;Koo, Ja-Chun;Park, Jong-Seok;Yang, Koon-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2008.04a
    • /
    • pp.193-194
    • /
    • 2008
  • This paper defines the electrical interfaces and limited items to integrate Ka-band communication payload on the satellite system, which includes the detailed interfaces such as bus voltage and data bus according to the related COMS requirements. And the BUS Electrical Interface Simulator introduces to use during the course of validating and accepting between the KA-Band payload and their EGSE. These interface design results are fully validated through the testing with the BEIS and is compliant with the satellite interface control interface requirements.

  • PDF

Data Bus Compatibility Analysis of COMS Communication Payload (통신해양기상위성 통신탑재체 데이터 접속 적합성 분석)

  • Choi, Jae-Dong;Cho, Young-Ho;Kim, Eui-Chan
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1013_1014
    • /
    • 2009
  • In this paper, the electrical interfaces used in between COMS satellite bus and Ka-band communication payload are analyzed to verify the robustness of data bus. The purpose of the serial data bus of satellite is to allow serial data transfer between one bus controller or source equipment to several user terminals or slave equipments. A serial data bus in COMS satellite is mainly used for Channel Amplifier and Digital Control Unit of Ka-band Payload.

  • PDF

Operation Plans of the Satellite Communications System for COMS (통해기 위성통신시스템의 운용계획)

  • Choe, Gyeong-Su;Sin, Cheon-Sik;Lee, Seong-Pal
    • Journal of Satellite, Information and Communications
    • /
    • v.1 no.2
    • /
    • pp.71-75
    • /
    • 2006
  • This paper describes operation plans for satellite communications system (SATCOM) which is consisted of Ka band communication payload, geostationary satellite control system and communication test earth station system for the communication, ocean and meteorological satellite system (COMS). Also this paper describes the communication service and mission plans by each system of the SATCOM, and configurations and functions of the system interface between each system. Especially this paper proposes operational items, functions and their configuration diagrams, touches their operational plans. This paper describes function definitions, configuration diagram and operation plans of the PCS )Payload Control System) for monitor and control of the communication payload and communication service network of the SATCOM.

  • PDF

Development of LNA module for Ka-band Communication Satellite Payload (Ka 대역 통신위성중계기용 저잡음증폭기 모듈 개발)

  • Chang Donig-Pil;Jung Jin-Cheol;Yom In-Bok;Park Jong-Heung;Oh Seung-Hyeup
    • Proceedings of the IEEK Conference
    • /
    • 2004.06a
    • /
    • pp.189-192
    • /
    • 2004
  • A LNA module, integrated microwave assemblies (IMAs) were developed for use in Ka-band Satellite Communication Satellite Payload that operates in the frequency range of 29,6 ${\~}$ 30.0GHz. The module will be placed directly behind their respective antenna feed horns to minimize the required waveguide and system noise figure impact. Two MMIC LNA Chips were used in the module design. The measured result shows that the module has 32dB gain and 2.4dB NF performance. The module size is 51m ${\times}$ 36m ${\times}$ 22 and the mass is 92g. The Noise Figure performance is the best result of currently available modules for satellite payload operating in the same frequency range. The module will be assembled using space-qualified process and tested for space qualification.

  • PDF

Innovative Geostationary Communication and Remote Sensing Mutli-purpose Satellite Program in Korea-COMS Program

  • Baek, Myung-Jin;Park, Jae-Woo
    • Journal of Satellite, Information and Communications
    • /
    • v.2 no.2
    • /
    • pp.29-35
    • /
    • 2007
  • COMS satellite is a multipurpose satellite in the geostationary orbit, which accommodates multiple payloads of the Ka band Satellite Communication Payload, Meteorological Imager, and Geostationary Ocean Color Imager into a single spacecraft platform. In this paper, Korea's first innovative geostationary Communication, Ocean and Meteorological Satellite (COMS) program is introduced which is fully funded by Korean Government. The satellite platform is based on the Astrium EUROSTAR 3000 communication satellite, but creatively combined with MARS Express satellite platform to accommodate three different payloads efficiently for COMS. The goals of the Ka band satellite communication mission are to in-orbit verify the performances of advanced communication technologies and to experiment wide-band multi-media communication service. The Meteorological Imager mission is to continuously extract meteorological products with high resolution and multi-spectral imager, to detect special weather such as storm, flood, yellow sand, and to extract data on long-term change of sea surface temperature and cloud. The Geostationary Ocean Color Imager mission aims at monitoring of marine environments around Korean peninsula, production of fishery information (Chlorophyll, etc.), and monitoring of long-term/short-term change of marine ecosystem. The system design difficulties are in the different kinds of payload mission requirements of communication and remote sensing purposes and how to combine them into one to meet the overall satellite requirements. In this paper, Ka band communication payload system is more highlighted.

  • PDF

Four-channel GaAs multifunction chips with bottom RF interface for Ka-band SATCOM antennas

  • Jin-Cheol Jeong;Junhan Lim;Dong-Pil Chang
    • ETRI Journal
    • /
    • v.46 no.2
    • /
    • pp.323-332
    • /
    • 2024
  • Receiver and transmitter monolithic microwave integrated circuit (MMIC) multifunction chips (MFCs) for active phased-array antennas for Ka-band satellite communication (SATCOM) terminals have been designed and fabricated using a 0.15-㎛ GaAs pseudomorphic high-electron mobility transistor (pHEMT) process. The MFCs consist of four-channel radio frequency (RF) paths and a 4:1 combiner. Each channel provides several functions such as signal amplification, 6-bit phase shifting, and 5-bit attenuation with a 44-bit serial-to-parallel converter (SPC). RF pads are implemented on the bottom side of the chip to remove the parasitic inductance induced by wire bonding. The area of the fabricated chips is 5.2 mm × 4.2 mm. The receiver chip exhibits a gain of 18 dB and a noise figure of 2.0 dB over a frequency range from 17 GHz to 21 GHz with a low direct current (DC) power of 0.36 W. The transmitter chip provides a gain of 20 dB and a 1-dB gain compression point (P1dB) of 18.4 dBm over a frequency range from 28 GHz to 31 GHz with a low DC power of 0.85 W. The P1dB can be increased to 20.6 dBm at a higher bias of +4.5 V.

CURRENT STATUS OF COMS PROGRAM DEVELOPMENT

  • Baek, Myung-Jin;Han, Cho-Young
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.45-48
    • /
    • 2007
  • COMS satellite is a multipurpose satellite in the geostationary orbit, which accommodates multiple payloads of Meteorological Imager, Geostationary Ocean Color Imager and Ka band Satellite Communication Payload in a single spacecraft platform. In this paper, current status of Korea's first geostationary Communication, Ocean and Meteorological Satellte(COMS) program development is introduced. The satellite platform is based on the Astrium EUROSTAR 3000 communication satellite, but creatively combined with MARS Express satellite platform to accommodate three different payloads efficiently for COMS. The system design difficulties are in the different kinds of payload mission requirements of communication and remote sensing purposes and how to combine them into a single satellite to meet the overall satellite requirements. The COMS satellite critical design has been accomplished successfully to meet three different mission payloads. The platform is in Korea, KARI facility for the system integration and test. The expected launch target of COMS satellite is scheduled in June 2009.

  • PDF

Multibeam Reflector Antenna for Ka-Band Communication Satellite (Ka 대역 통신위성용 다중 빔 배열 급전 반사판 안테나)

  • Yun, So-Hyeun;Uhm, Man-Seok;Choi, Jang-Sup;Yom, In-Bok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.6
    • /
    • pp.756-759
    • /
    • 2012
  • This paper presents the multibeam service coverage of GEO(Geostationary Orbit) satellite and the practical antenna scheme scenarios to provide the universal communication services on the Korean peninsula. The proposed antenna systems consist of the simplest scheme and feed network so that they can be mounted on satellites. The feed networks are effectively organized according to the frequency and polarization plan. Despite simple structure, all scenarios meet the electrical performance by the optimization of feed allocation and feed excitation.

A Study on Ka band Qualification Model Multiplexers for Communication, Ocean and Meteorological Satellite (COMS) Payload (통신해양기상위성 Ka 대역 인증모델 밀티플렉서에 대한 연구)

  • Eom, Man-Seok;An, Gi-Beom;Yun, So-Hyeon;Gwak, Chang-Su;Yeom, In-Bok
    • Journal of Satellite, Information and Communications
    • /
    • v.1 no.2
    • /
    • pp.63-70
    • /
    • 2006
  • This paper presents the results of Ka band qualification model multiplexers for COMS Payload to be launched in 2008. These are the input and output multiplexers of the satellite transponder to use available frequency resources effectively and the diplexer of the satellite antenna to use the same reflector for both transmitting and receiving frequency bands, respectively. The input multiplexer with four frequency channels has four(4) independent channel filters which consist of an 8-pole elliptic band-pass filter for high frequency selectivity and a 2-pole equalizer for group delay equalization. For low insertion loss, mass and volume reduction, manifold type os employed for output multiplexer. E-plane T-junction is used for either splitting or combining a frequency band into two sub-bands. Asymmetric inductive irises are used to tune the receiving filter easily. The electrical performance and environmental test such as vibration test, mechanical shock test, thermal vacuum test and EMC test are performed and the results of all qualification model multiplexers are compliant to the requirement of each multiplexer. Followed by this qualification, the flight model equipment will be developed.

  • PDF