• 제목/요약/키워드: sandy-clay

검색결과 392건 처리시간 0.027초

한국잔디의 토성별 적정파종량 구명 연구 (Studies on the Optimal Seeding Rate of Korean Lawngrass (Zoysia japonica Steud.)in Three Different Soil Textures)

  • 김인선;이정재;함선규;양승원;안경태
    • 아시안잔디학회지
    • /
    • 제5권2호
    • /
    • pp.87-94
    • /
    • 1991
  • This study was carried out to determine the optimal seeding rate of Korean lawngrass in three different soil textures. The results obtained are summarized as follows;1.In early development, there were not significant differences in leaf length and width except for leaf width in mean seeding rates. And there was significant difference in tillering number. Tillering number of Korean lawngrass grown in sandy clay loam soil was more abudant than that grown in sandy clay and sandy loam soils.2.The rate of ground cover of Korean lawngrass grown in sandy clay loam soil was faster than that in other soils. The ground cover rate was faster in the following order: 15, 12, 10, 7, 5, 3 kg/10a. But in sandy clay loam soil, it was showed that the plot seeded at 12kg/10a be faster than that at l5kg/10a. Plots seeded from 5 to 15kg/10a in sandy clay loam soil and 15kg/10a in sandy clay soil were showed the 100% ground cover during the period of the year seeded.3.There were not significant differences in dry weight of each part measured at 11 and l4months after seeding. But there were significant differences in dry weight of shoot and total dry weight. Total and shoot dry weight of Korean lawngrass grown in sandy clay loam soil were heavier than that in others. 4.It was revealed that the optimal seeding rate in sandy clay loam soil was 12 kg/10a. But it was suggested that the optimal seeding time and rate in each soil textures be undertaken in future.

  • PDF

Effect of Soil Textures on Fruit Yield, Nitrogen and Water Use Efficiencies of Cucumber Plant as Affected by Subsurface Drip Fertigation in the Greenhouse

  • Lim, Tae-Jun;Park, Jin-Myeon;Park, Young-Eun;Lee, Seong-Eun;Kim, Ki-In
    • 한국토양비료학회지
    • /
    • 제48권5호
    • /
    • pp.372-378
    • /
    • 2015
  • Growing crops under different soil textures may affect crop growth and yield because of soil N availability, soil N leaching, and plant N uptake. The objective of this study was to evaluate effects of three different soils (sandy loam, loam, and clay loam) on cucumber (Cucumis sativus L.) yield, nitrogen (N) use efficiency (NUE), and water use efficiency (WUE) by subsurface drip fertigation in the greenhouse. Three different soil textures are sandy loam, loam, and clay loam with 3 replications. The dimension of each lysimeter was $1.0m(W){\times}1.5m(L){\times}1.0m(H)$. Cucumber was transplanted on April $8^{th}$ and Aug $16^{th}$ in 2011. The subsurface drip line and tensiometer was installed at 30 and 20 cm soil depth, respectively. An irrigation with $100mg\;NL^{-1}$ concentration was automatically applied when the tensiometer reading was 10 kPa. Volumetric soil water content for cucumber cultivation was the highest in 30 cm soil depth regardless of soil texture and was lowered when soil depth was deeper. The volumetric soil water contents at soil depths of 10, 30, 50, and 70 cm were the highest at clay loam, followed by loam, and sandy loam. The growth of cucumber at the $50^{th}$ day after transplanting was the lowest at sandy loam. Cucumber fruit yields were similar for all three soil textures. The highest amount of water use at sandy loam was observed. Nitrogen and water use efficiencies for cucumber were higher for clay loam, followed by loam and sandy loam, while the amount of N leaching was the greatest under sandy loam, followed by loam, and clay loam. Overall, growing cucumber on either loam or clay loam is better than sandy loam if subsurface drip fertigation is used in the greenhouse.

살균토양(殺菌土壤), 자연토양(自然土壤) 및 Glucose-peptone으로 개량(改良)한 토양조건(土壤條件)이 Helminthosporium victoriae와 Mortierella n. sp.에 미치는 정균작용(靜菌作用) (The Nature of Fungistasis in Sterile and Glucose-peptone Amended Soil on Helminthosporium victoriae and Mortierella n. sp.)

  • 이민웅;최혜정
    • 한국균학회지
    • /
    • 제10권3호
    • /
    • pp.119-124
    • /
    • 1982
  • 공시(供試)한 6개지역(個地域)의 토성(土性)은 Colwood와 Capac이 양질토(良質土)이고 Gilford와 Ceresco는 사질식양토(砂質埴壤土)이며 Sission은 식양토(埴壤土)이고 Spinke는 사질토(砂質土)이었다. 토양산도(土壤酸度)는 Gilfold사질식양토(砂質埴壤土)가 6.6이고 기타는 $5.4{\sim}5.9$의 범위로 나타났으며 유기물함량(有機物含量)은 Gilford토양(土壤)이 제일 많이 함유하고 있었다. 일반세균수(一般細菌數)는 Gilford토양에서는 다른 토양(土壤)에서 보다 통제적으로 많았고 사상균수(絲狀菌數)에서도 Gilford와 Colwood토양(土壤)이 다른 토양보다 통계적으로 더 많았다. 방선균(放線菌)의 밀도(密度)를 보면 Gilford와 Ceresco의 토양(土壤)에서 많았고 혐기성(嫌氣性) 세균(細菌)의 수(數)는 Ceresco, Capac및 Colwood에서 많았으며 번대로 사질식양토(砂質埴壤土)인 Gilford에서는 적었다. $^{14}C-glucose$를 첩가한 토양(土壤)에서의 미생물(微生物)의 호흡량(呼吸量)은 Ceresco, Spinks, Colwood, Sission, Capac 및 Gilford의 순(順)으로 적었다. 공시균주(供試菌株) Helminthosporium victoriae(# 418)와 Mortierella n. sp.에 대한 자연토양(自然土壤), 살균토양(殺菌土壤)및 glucose와 peptone을 농도별(濃度別)(mg/g 토양(土壤))로 첨가한 토양(土壤)에서의 발아율(發芽率)을 보면 자연토양(自然土壤)에서는 $0{\sim}5%$이고 살균토양(殺菌土壤)에서는 $90{\sim}98%$이었다. 토양(土壤)에 첨가(添加)된 영양물(營養物)의 농도(濃度)에 따라 공시균(供試菌)의 발아(發芽)정도는 달랐다. 일반적으로 Capac과 Gilford에서는 Spinks토양(土壤) 보다 발아(發芽)에 필요한 영양물(營養物)을 더 많이 요구(要求)하였으며 특히 Mortierella는 H. victoriae보다 발아(發芽)에 있어서 더 많은 량(量)의 영양물(營養物)을 요구(要求)하였다.

  • PDF

라이시미터 조건에서 토성이 벼의 생육 및 논토양의 지하삼투수량에 미치는 영향 (Effect of Soil Texture on Rice Growth and Paddy Soil Percolation under Lysimeter Condition)

  • 채제천;김성원
    • 한국작물학회지
    • /
    • 제46권3호
    • /
    • pp.236-240
    • /
    • 2001
  • 논토양의 토성에 따른 벼의 수량, 관개용수량 및 지하삼투수량의 차이를 구명코자 사양토, 식양토, 식토 등 3종류의 토성에서 1999년과 2000년 라이시미터(lysimeter) 조건에서 실험한 결과는 다음과 같다. 1. 벼의 초장과 분얼 및 쌀 수량은 토성 처리간 유의한 차이가 없었다. 2. 벼 생육기간 중 총관개용수량은 1년차에는 식양토, 사양토, 식토 순으로 각각 3,306, 2,650, 2,002 l/$m^2$ 이었고 2년차에는 사양토, 식양토, 식토 순으로 각각 5,281, 4,984, 3,968 l/$m^2$이었다. 3.벼 재배기간 중 총지하삼투수량은 1년차에는 식양토, 사양토, 식토가 각각 2,141, 1,228, 862 l/$m^2$ 이었고, 2년차에는 사양토, 식양토, 식토에서 각각 4,448, 3,833, 2,925 l/$m^2$이었다. 4. 지표면하 10cm까지의 깊이에 분포하는 벼 뿌리의 비율은 사양토 56.0%, 식양토 61.4%, 식토 72.0%로 식토일수록 표층부 분포 비율이 높았다. 5. 논토양에서 지하삼투수량은 토성의 영향도 있으나 토양 중 벼 뿌리 생장량의 영향도 있어서, 뿌리 생장량이 많았던 처리구의 지하삼투수량이 증가하는 것으로 나타났다.

  • PDF

The Effect of Soil Textures on the Flowering characteristics and Green Manure Yield of Crimson Clover (Trifolium incarnatum L.) in Upland Soil

  • Cho, Hyeoun-Suk;Seo, Myung-Chul;Park, Tea-Sun;Kim, Jun-Hwan;Sang, Wan-gyu;Shin, Pyeong;Lee, Geon Hwi
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.367-367
    • /
    • 2017
  • Crimson clover, a legume crop, is a landscape crop and green manure crop that can be sowing in spring and autumn. Its red flower blooms in May, and serves various roles such as landscape composition, weeds suppressing, prevention of soil loss and nutrient on sloping land and supplying nitrogen and organic matter in soil. Thus, in order to utilize this crop in agriculture land, we evaluated the growth characteristics of crimson clover cultivated in four different soil textures, sand, sandy loam, loam, and clay loam. The nitrogen content of crimson clover was 15.8 g kg-1 and C/N rate was 20.3. Its growth was good in sandy loam and loam. Its plant height was 42.5 cm in sandy loam and 49.5 cm in loamy, respectively, which are approximately 20 cm longer than the sand and clay loam. The crimson clover in sandy loam and loam bloomed about seven days earlier than those in sand and clay loam. Regarding number of flower per hill and flower length, there were no difference between soil textures. Dry weight of crimson clover was 2.5 Mg ha-1, 2.3 Mg ha-1 each in sandy loam and loam. Therefore, it was approximately 0.8 ~ 1.1 Mg ha-1 higher than dry weight of sand and sandy loam. Plant height and dry weight of crimson clover was increased late harvest time. Nitrogen contribution were higher in loam and clay loam, when it was respectively 51.3 kg ha-1, 53.5 kg ha-1. Therefore, according to flowering properties and dry weight, the growth and development of crimson clover was finest in sandy loam and loam.

  • PDF

동전기법을 이용한 점토성-사질토에 존재하는 자원 회수 증진을 위한 적용성 연구 (Application for Improving Resource Recover at Clay-Sandy Soil based on Electrokinetic Technology)

  • 신상희
    • 한국지반환경공학회 논문집
    • /
    • 제14권10호
    • /
    • pp.5-9
    • /
    • 2013
  • 점토성-사질토에 분포하는 양이온 금속들과 석유를 효율적으로 회수하기 위한 방법으로 동전기법 연구를 제안하였다. 제안된 동전기법은 투수계수가 낮은 매질 속에 존재하는 중금속에 포함되어 있는 양이온 금속 또는 석유등의 회수를 위해, 양극탱크(Anode chamber)에서 발생하는 잉여가스의 압력을 이용해서 점토성-사질토 샘플에 재주입하여 회수하는 기법이다. 제안된 동전기법의 성능을 확인하기 위해 제작된 샘플은 총 7일간에 점진적으로 압력을 증가시켜 최종 30psi($2.11kgf/cm^2$)의 압력으로 압축과정을 거쳐 완성되었다. 압축 전 샘플 내에 구리링을 삽입하여, 실험 종료 후 구리링의 변화된 모습을 관찰하였다. 본 연구에서 사용된 모듈은 가압식 모듈과 비가압식 모듈이고, 각각의 실험 테스트는 24시간 동안 2V/cm의 전압 경사 조건으로 연속적인 처리 공정으로 진행하였다. 그 결과, 가압식 모듈의 효율이 비가입식 모듈보다 우수한 것으로 나타났다.

The Effect of Soil Textures on the Flowering characteristics and Green Manure Yield of Crimson Clover (Trifolium incarnatum L.) in Upland Soil

  • Cho, Hyeon-Suk;Seo, Myung-Chul;Park, Tea-Sun;Kim, Jun-Hwan;Sang, Wan-gyu;Shin, Pyeong;Lee, Geon Hwi
    • 한국토양비료학회지
    • /
    • 제49권6호
    • /
    • pp.705-711
    • /
    • 2016
  • Crimson clover, a legume crop, is a landscape crop and green manure crop that can be sowing in spring and autumn. Its red flower blooms in May, and serves various roles such as landscape composition, weeds suppressing, prevention of soil loss and nutrient on sloping land and supplying nitrogen and organic matter in soil. Thus, in order to utilize this crop in agriculture land, we evaluated the growth characteristics of crimson clover cultivated in four different soil textures; sand, sandy loam, loam, and clay loam. The nitrogen content of crimson clover was $15.8g\;kg^{-1}$ and C/N ratio was 20.3. Its plant height was 42.5 cm in sandy loam and 49.5 cm in loamy, respectively, approximately 20 cm longer than the sand and clay loam. The crimson clover in sandy loam and loam bloomed about seven days earlier than those in sand and clay loam. Regarding number of flower per hill and flower length, there were no difference among the soil textures. Dry weight of crimson clover for sandy loam and loam was $2.5Mg\;ha^{-1}$ and $2.3Mg\;ha^{-1}$, respectively, $0.8{\sim}1.1Mg\;ha^{-1}$ higher than that of sand and sandy loam. Plant height and dry weight of crimson clover increased with delaying harvest time. Nitrogen contribution in loam and clay loam was $51.3kg\;ha^{-1}$ and $53.5kg\;ha^{-1}$, respectively. Therefore, in terms of flowering properties and dry weight, the proper soil texture for the growth and development of crimson clover was sandy loam and loam.

불포화 사질토의 도로함몰 특성에 관한 실험적 연구 (Experimental Study on Road-Subsidence Characteristics in Unsaturated Sandy Soils)

  • 권기철
    • 한국도로학회논문집
    • /
    • 제20권1호
    • /
    • pp.19-25
    • /
    • 2018
  • PURPOSES : The purpose of this study is to identify the road-subsidence mechanism in unsaturated sandy soils. METHODS : A series of soil chamber tests were conducted under various conditions. RESULTS : The cavity-expansion characteristics in unsaturated sandy soils due to seepage were affected by the outlet size, seepage intensity, relative density, and fine content. CONCLUSIONS : In unsaturated sandy soils, the cavity-expansion speed was affected by the outlet size, relative density, seepage intensity, and clay content; however, the cavity-expansion shape was very similar. As the outlet size and seepage intensity increased, the cavity-expansion speed increased. As the relative density increased, the cavity-expansion speed increased because of a sudden decrease in shear strength, resulting from the increased saturation (reduction of matric suction). The cavity expanded faster with the increasing clay content, up to a certain threshold. It expanded at a slower rate once it passed the threshold. Finally, it reached a stable state where the cavity did not expand due to seepage.

밭작물 소비수량에 관한 기초적 연구(III)-고추 및 가을 무우- (Basic Studies on the Consumptive Use of Water Required for Dry Field Crops (3) -Red Pepper and Radish-)

  • 김철기;김진한;정하우;최홍규;권영현
    • 한국농공학회지
    • /
    • 제32권1호
    • /
    • pp.55-71
    • /
    • 1990
  • The purpose of this study is to find out the basic data for irrigation plans of red pepper and radish during the growing period, such as total amount of evapotranspiration, coefficent of evapotranspiration at each growth stage, the peak stage of evapotranspiration, the maximum ten day evapotranspiration , optimum irrigation point, total readily available moisture and intervals of irrigation date. The plots of experiment were arranged with split plot design which were composed of two factors, irrigation point for main plot and soil texture for split plot, and three levels ; irrigation point with pH1.7-2.0, pF2.1-2.4 and pF2.5-2.8, at soil texture of sandy soil, sandy loam and silty clay for both red pepper and radish, with two replications. The results obtained are summarized as follows. 1.1/10 exceedance probability values of maximum total pan evaporation during growing period for red peppr and radish were shown as 663.6 mm and 251.8 mm. respectively, and those of maximum ten day pan evaporation for red pepper and radish, 67.1 mm and 46.9 mm, respectively. 2.The time that annual maximum of ten day pan evaporation can he occurred, exists at any stage between the middle of May and the late of August for red pepper, and at any stage between the late of August and the late September for radish. 3.The magnitude of evapotranspiration and its coefficient for red pepper was occurred large in order of pF1.7-2.0 pF2.1-2.4 and pF2.5~2.8 in aspect of irrigation point and the difference in the magnitude of evapotranspiration and of its coefficient between levels of irrigation point was difficult to be found out due to the relative increase in water consumption resulted from large flourishing growth at the irrigation point in lower water content for radish. In aspect of soil texture they were appeared large in order of sandy loam, silty clay and sandy soil for both red pepper and radish. 4.The magnitude of leaf area index was shown large in order of pF2.1-2.4, pF2.5-2.8, and pFl.7-2.0, for red pepper and of pF2.5-2.8, pF2.1-2.4, pFl.7-2.0 for radish in aspect of irrigation point, and large in order of sandy loam, silty clay, sandy soil for both red pepper and radish in aspect of soil texture 5.1/10 exceedance probability value of evapotranspiration and its coefficient during the growing period for red pepper were shown as 683.5 mm and 1.03, respectively, while those of radish, 250.3 mm and 0, 99. respectively. 6.The time that the maximum evapotranspiration of red pepper can be occurred is in the middle of August around the date of ninetieth to hundredth after transplanting, and the time for radish is presumed to be in the late of September, around the date of thirtieth to fourtieth after sowing. At that time, 1/10 exceedance probability value of ten day evapotranspiration and its coefficient for red pepper is assumed to be 81.8 mm and 1.22, respectively, while those of radish, 49, 7 mm and 1, 06, respectively. 7.Optimum irrigation point for red pepper on the basis of the yield of raw matter is assumed to be pFl.7-2.0 for sandy soil, pF2.5-2.8 for sandy loam, and pF2.1-2.4 for silty clay. while that for radish is appeared to be pF2.5-2.8 in any soil texture used. 8.The soil moisture extraction patterns of red pepper and radish have shown that maximum extraction rates exist at 7 cm deep layer at the beginning stage of growth in any soil texture and that extraction rates of 21 cm to 35 cm deep layer are increased as getting closer to the late stage of growth. And especially the extraction rates have shown tendency to be greatest at 21cm deep layer from the most flourishing stage of growth for red pepper and at the last stage of growth for radish. 9.The total readily available moisture on the basic of the optimum irrigation point become 3.77-8.66 mm for sandy soil, 28.39-34.67 mm for sandy loam and 18.40-25.70 mm for silty clay for red pepper of each soil texture used but that of radish that has shown the optimum irrigation point of pF2.5-2.8 in any soil texture used. 12.49-15.27 mm for sandy soil, 23.03-28.13 mm for sandy loam, and 22.56~27.57 mm for silty clay. 10.On the basis of each optimum irrigation point. the intervals of irrigation date at the growth stage of maximum consumptive use of red pepper become l.4 days for sandy soil, 3.8 days for sandy loam and 2.6 days for silty clay, while those of radish, about 7.2 days.

  • PDF

감초 생육 및 품질에 미치는 재배 토성의 영향 (Effects of Cultural Soil Texture on Growth and Quality of Glycyrrhiza uralensis Fischer)

  • 남상영;김인재;최성열;김민자;김영호;송인규;이광재;박재호;김태중
    • 한국국제농업개발학회지
    • /
    • 제23권5호
    • /
    • pp.531-536
    • /
    • 2011
  • 재배토성이 감초 생육 및 품질에 미치는 영향을 구명코자 2009년부터 2년간 시험을 수행한 결과를 요약하면 다음과 같다. 1. 재배년생별 생육중 경엽은 1년생, 포복경 2년생, 근은 2년생에서 양호한 경향을 보였으며, 토성에 따라서 경엽중은 사양토에서 무거웠고, 초장, 분지수, 경태는 사질식양토에서 우수하였다. 2. 포복경의 길이, 수, 무게 등 생육은 사질식양토 > 사양토 > 양질사토 순으로 좋았다. 3. 주근과 지근의 생육은 양질사토에서 길었으며, 주근경, 지근경은 사양토에서 굵었다. 지근수는 사질식양토에서 다소 많았다. 4. 근 수량은 주근, 지근 등에서 사양토 > 사질식양토 > 양질 사토 순으로 많으며, 1년생과 2년생 근 상품 수량은 사양토에서 양질사토 204 kg/10a 대비 57%, 2년생은 71% 각각 증수하였다. 5. 글리시리진(glycyrrhizinic acid)의 함량은 1년생은 사질식 양토에서 1.62%, 2년생은 사양토에서 1.58%로 가장 높았다.