• Title/Summary/Keyword: sandy soil slope

Search Result 87, Processing Time 0.025 seconds

Mohr-Coulomb Failure Criterion with Tensile Strength in Sand (모래에서 인장력을 고려한 Mohr-Coulomb 파괴규준)

  • Kim, Tae-Hyung;Lee, Yong-Su;Hwang, Woong-Ki;Kang, Ki-Min;Ahn, Yonug-Kyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.963-971
    • /
    • 2008
  • Unsaturated soil mechanics has been often used to find out a cause of failure (tensile failure) of retaining walls and hill slopes containing sandy soils. Checking shear strength is a popular method by considering suction stress developed form pore water menisci among the grains and saturated pockets of pore water under negative pressure. Linear Mohr-Coulomb failure criterion is generally adopted as a failure criterion. However, depending on relative density, stress history, and the magnitude of stress, the failure behavior of sand may not follow linear M-C frictional behavior. For stress in the large compressive ranges, say from tens to hundreds of kPa, the linear M-C criterion is an adequate representation for the shear strength behavior of sand. However, less than tens of kPa, the M-C criterion often can not be accurately represented. Depending on failure criterion, the uniaxial tensile strength is different over 100% relative error. For sand behavior under small compression regimes, therefore, such as under low or zero gravity, or under undergoing tensile failure in the crest area of hill slopes or behind retaining walls, it is important to consider the non-linear behavior.

  • PDF

Effect of Surface Cover on the Reduction of NPS Pollution at a Vegetable Field (야채재배 밭에서 지표피복의 비점오염원 저감효과)

  • Shin, Minhwan;Jang, Jeongryeol;Won, Chulhee;Choi, Younghun;Shin, Jaeyoung;Lim, Kyoung Jae;Choi, Joongdae
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.3
    • /
    • pp.436-443
    • /
    • 2012
  • This research was focused on the effect of rice straw and rice straw mat on the reduction of upland field non-point source (NPS) pollution discharges. Six experimental plots of $5{\times}22m$ in size and 3% in slope prepared on gravelly sandy loam soil were treated with control, rice straw cover and rice straw mat cover. Radish in Spring growing seasons were cultivated. NPS pollution discharge was monitored and compared with respect to the treatments. The surface cover rate of rice straw and rice straw mat right after the treatments was 64.7% and 73.7%, respectively. Rainfall of the 16 monitored events ranged from 12.8 mm to 538.2 mm. Runoff coefficient of the events was 0.01~0.67 in control plot, 0~0.63 in rice straw plot and 0~0.45 in rice straw mat plot. The reduction of runoff compared to the control plot was 5.4~99.7% in rice straw plot and 32.9~100% in rice straw mat plot. The reduction of NPS pollution load was 52.0% for SS, 28.5% for T-N and 35.2% for T-P in rice straw plot and 79.8% for SS, 68.3% for T-N and 53.3% for T-P in rice straw mat plot. This research revealed that rice straw mat cover on the soil surface could not only increase the crop yield and farmer's income but also reduce the NPS pollution loads significantly.

Evaluation of Furrow Mulching Methods for Controlling Non-Point Source Pollution Load from a Sloped Upland (경사밭 고랑멀칭 방법에 따른 비점오염 저감효과 평가)

  • Yeob, So-Jin;Kim, Min-Kyeong;Kim, Myung-Hyun;Bang, Jeong-Hwan;Choi, Soon-Kun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.3
    • /
    • pp.33-43
    • /
    • 2022
  • South Korea's agricultural nitrogen balance and phosphorus balance rank first and second, respectively, among OECD countries, and proper nutrient management is required to preserve the water quality of rivers and lakes. This study evaluates the effects of furrow mulching on the reduction of non-point source pollution (NPS) load from a sloped upland. The study site was Wanju-gun, Jeollabuk-do, and the survey period was from 2018 to 2019. The slope of the testbed was 13%, and the soil type was sandy loam. The cropping system consisted of maize-autumn Chinese cabbage rotation. The testbed was composed of bare soil (bare), control (Cont.), furrow vegetation mulching (FVM), and furrow nonwoven fabric mulching (FFM) plots. Runoff was collected for each rainfall event with a 1/100 sampler, and the NPS load was calculated by measuring the concentrations of SS, T-N, and T-P. The NPS load was then analyzed for the entire monitoring and crop cultivation periods. During the monitoring period, the effect of reducing the NPS load was 1.5%~44.5% for FVM and 13.1%~55.2% for FFM. During the crop cultivation period, it was 1.2%~80.5% for FVM and 27.0%~65.1% for FFM, indicating that FFM was more effective than FVM. As the NPS load was fairly high during the crop conversion period, an appropriate management method needs to be implemented during this period.

Erodibility evaluation of sandy soils for sheet erosion on steep slopes (급경사면의 면상침식에 대한 사질토양의 침식성 평가)

  • Shin, Seung Sook;Park, Sang Deog;Hwang, Yoonhee
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.4
    • /
    • pp.291-300
    • /
    • 2022
  • Artificial disturbance in mountainous areas increases the sensitivity to erosion by exposure of the subsoil with a low loam ratio to the surface. In this study, rainfall simulations were conducted to evaluate the erodibility of sand and loamy sand in the interrill erosion by the rainfall-induced sheet flow. The mean diameters of sand and loamy sand used in the experiment were 0.936 mm and 0.611 mm, respectively, and the organic matter content was 2.0% and 4.2%, respectively. In the experimental plot, the runoff coefficient of overland flow increased 1.16 times in loamy sand rather than sand. Mean sediment yields of loamy sand and sand by sheet erosion were 3.71kg/m2/hr and 1.13kg/m2/hr respectively. The erodibility, the rate of soil erosion for rainfall erosivity factor, was 3.65 times greater in loamy sand than in sand. As the gradient of the steep slope increased from 24° to 28°, the sediment concentration and the erodibility for two soils increased by about 20%. The erodibility factor K of sandy soils for small plots was overestimated compared to the measured erodibility. This means that RUSLE can overestimate the sediment yields by sheet erosion on sandy soils.

Horizontal Behavior Characteristics of Umbrella-Type Micropile Applied in Sandy Soil Subjected to Seismic Motion (사질토 지반에 설치된 우산형 마이크로파일의 지진 시 수평거동 특성)

  • Kim, Soo-Bong;Son, Su Won;Kim, Jin Man
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.7
    • /
    • pp.5-16
    • /
    • 2020
  • Currently, the seismic design standards have been strengthened due to the occurrence of the Gyeongju and Pohang earthquake, and seismic performance evaluation of existing facilities is being conducted. It aims to secure a seismic performance effect during earthquakes by improving the micro-pile method, which can be constructed in limited confined places while minimizing damage to existing facilities. The improvement method is to construct all the piles in the square-tray-type plate on the top of the pile by constructing the slope pile in the form of an umbrella around the vertical pile, the main pillar. In this paper, the numerical analysis was performed to analyze the horizontal displacement behavior of an umbrella-type micropile for various real-measurement seismic waves in sandy soil. As a result of numerical analysis, the softer the ground, the better the effect of horizontal resistance of umbrella-type micropile. The horizontal displacement reduction effect was pronounced when the embedded depth was 15 m or more at the same ground strength, and it was found to be effective in earthquakes if it was settled on the ground with an N value of 30 or more. The embedded depth and horizontal displacement suppression effect of the micropile was proportional. Generally, the weaker the ground, the greater the displacement suppression effect. Umbrella-type micropile had a composite resistance effect in which the vertical pile resists the moment and inclined pile resists the axial force.

Investigation of Heavy Metal Concentrations in Paddy Soils of Gyeongnam Province (경남지역 논토양의 중금속함량 조사)

  • Lee, Young-Han;Sonn, Yeon-Kyu;Ok, Yong-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.3
    • /
    • pp.399-403
    • /
    • 2012
  • The management of heavy metals in soil is important for environmental-friendly agriculture and keeping an ecosystem healthy. In this study, we examined the concentrations of heavy metals (Cd, Cr, Cu, Ni, Pb, Zn, and As) in 260 paddy soils sampled from Gyeongnam Province. The concentrations of the heavy metals were 0.143 mg $kg^{-1}$ (ranged 0.003-0.537) for Cd, 0.322 (0.002-0.986) mg $kg^{-1}$ for Cr, 25.41 (6.03-76.19) mg $kg^{-1}$ for Cu, 16.36 (2.63-32.94) mg $kg^{-1}$ for Ni, 18.67 (4.16-87.02) mg $kg^{-1}$ for Pb, 71.76 (22.99-153.58) mg $kg^{-1}$ for Zn, and 3.516 (0.002-19.481) mg $kg^{-1}$ for As, respectively. In addition, the concentration of Cd was highest in mountain foot-slope, Ni and As were highest in diluvial terrace, and Zn was highest in marine plains. Higher concentrations of Cd, Cu, and Zn were found in silty clay loam soils compared to silt loam, sandy loam, and loam soils.

Ecological Characteristics of Viola websteri Hemsley Habitats (왕제비꽃 자생지의 생태특성)

  • Jang, Su-Kil;Cheon, Kyeong-Sik;Kim, Kyung-Ah;Jang, Jin-Hwan;Yoo, Ki-Oug
    • Korean Journal of Plant Resources
    • /
    • v.23 no.4
    • /
    • pp.261-273
    • /
    • 2010
  • This study intended to investigate the environmental factors including soil and vegetation in order to understand the environmental and ecological characteristics of seven different habitats of Viola websteri. These habitats, according to investigations, are mostly located on the slope of mountains facing north at an altitude of 343 m to 991 m above sea level with angle of inclination from 1 degree to 33 degrees. The type of soil is mostly sandy loam and the average field capacity of soil is 28.97%. Their average organic matter is 16.63%, soil pH 5.62, and available phosphorus is 14.75%. A total of 133 vascular plants are identified in 18 quadrates of seven habitats. Dominant species of woody plants in seven habitats are represented as Acer pictum subsp. mono and Quercus mongolica in tree layer, and Acer pictum subsp. mono in subtree layer. Importance value of Viola websteri is 9.66%, as regards the herbaceous layer, and five highly ranked species such as Meehania urticifolia(8.53%), Pseudostellaria heterophylla(6.51%), Hylomecon vernalis(5.15%), Oxalis obtriangulata (4.52%), and Pseudostellaria davidii(4.15%) are considered to be an affinity with Viola websteri in their habitats. The degree of their average species diversity is 1.32, and that of dominance and evenness are 0.08 and 0.89, respectively. Correlation coefficients analysis based on environmental factors, vegetation and soil analysis shows that the coverage of Viola websteri is correlated with silt and sand ratio, and coverage of tree layers are correlated with species richness and altitude. Cluster analysis based on vegetation structure of each habitats are forms a three groups.

A Survey on the Soil Environments of Alpine Vegetable Housing in Honam Area (호남지역(湖南地域) 고냉채소단지(高冷菜蔬團地)의 토양환경연구(土壤環境硏究))

  • Yoo, Chul-Hyun;Cho, Guk-Hyun;Choi, Jeong-Weon;Park, Keon-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.21 no.3
    • /
    • pp.246-253
    • /
    • 1988
  • This survey was carried out to obtain the basic information for the stable high yield of income-crops. Cropping systems, soil morphological and chemical properties were investigated. The obtained results were summarized as follows: 1. In Jinan and Jangsu, cultivated area of radish was 76.5% and.65.4%, respecitively, but in Unbong Chinese Cabbage, 71.1%, by second Crop. 2. In topographycal distribution, the mountain foot slope area in Jinan, Jangsu and Unbong was 69, 77 and 85%, respectively. In the distribution of elevation, semi-Alpine region in Jinan and Unbong was 85 and 69%, respectively, but Alpine region in Jangsu was 62%, of cultivated area. 3. Ploughing depth was 0 to 10 cm in Jinan and Jangsu, and 11 to 15cm, in Unbong. Gravel content class was 4th class in Jinan and 3rd class in Jangsu and Unbong. 4. For the distribution of soil types, normal upland came to 69.2% in Unbong, sandy and skeletal upland, 46.1 % and normal and sandy upland, 39 and 38%, respectively, in Jangsu. 5. The uplands soil classified as the 5th class, with improper for adequate cropping were. 6. For the chemical properties according to topography available phosphate $(-0.344^*)$, Ca $(-0.398^*)$, K $(-0.485^{**})$ and CEC $(-0.325^{**})$ showed the negative significancy with the elevation. 7. Among the variations of chemical properties by continuous cropping, the soil pH $(-0.491^{**})$ and the content of organic matter $(-0.434^{**})$, Ca $(-0.705^{**})$, CEC $(-0.512^{**})$, total nitrogen $(-0.559^{**})$ showed the high negative correlations, while the contents of available phosphate $(0.671^{**})$ and K $(0.543^{**})$ showed the high positive correlations, with the number of years of continuous cropping.

  • PDF

Study on Shear Strength Using a Portable Dynamic Cone Penetration Test and Relationship between N-Nc (소형동적콘관입시험을 이용한 전단강도 산정 및 N-Nc 상관관계 연구)

  • Kim, Hyukho;Lim, Heuidae
    • Economic and Environmental Geology
    • /
    • v.50 no.2
    • /
    • pp.145-157
    • /
    • 2017
  • Because of Recent intensive rainfall, nationally landslides and slope failure phenomenon has been frequently occur. Providing proposed-measures to the natural disasters that occur in these localities and the slope, must be derived ground of strength parameters(shear strength) as a design input data. However, it is such as extra deforestation and a lot of economic costs in order to make the access to the current area and the slopes ground survey is required. Thus, by small dynamic cone penetration test machine using the human to carry in the field, it is possible to easily measure the characteristics and strength constant of the ground of more than one region. In this study through researching analysis of the domestic and foreign small dynamic cone penetration test method, it has proposed a cone material and test methods suitable for the country. Cone penetration test Nc in the field has comparated with analysis of the value and the standard penetration test N value. And, in addition to this, direct shear test and borehole shear test were performed by depth, bedrock, and soil type and passing #200 and the correlation of the Nc value. In particular, in the present study, for the sandy soil that has distict distribute in mountain, it is proposed relation of shear strength corresponding to the Nc value (cohesion and internal friction angle) in order to calculate such effective ground shear strength.

Runoff and soil loss on newly reclaimed upland (야산개발지(野山開發地)의 토양침식(土壤侵蝕)에 관(關)하여)

  • Jung, Yeong Sang;Shin, Jae Sung;Shin, Yong Hwa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.9 no.1
    • /
    • pp.9-16
    • /
    • 1976
  • In order to investigate inherent erodibility of the soil, which is a major factor is soil erosion prediction, a survey on runoff and soil loss of reclaimed upland soil was carried out by using a portable rainulator. The relations of soil loss and some physical properties of the soil were discussed. The soil erodibility factor for Universal soil loss equation was calculated and compared with that of Wischmeier's nomograph. The result were as follows: 1. Total runoff increased for finer textured soil in order of Jeonnam silty clay loam, Songjeong clay loam, Yesan loam, Samgag and Sangju sandy loam. Total soil loss and soil content in runoff were not correspondently related with textural characteristic in order of Jeonnam, Samgag, Sangju, Yesan, and Songjeong. Total runoff, soil loss, and soil content in runoff were increased for steeper slope. 2. Soil loss and soil content in runoff negatively correlated with organic matter content of surface soil, while positively correlated with dispersion ratio, clay ratio, silt content, and significantly correlated with Middleton erosion ratio for coarser textured soil but not correctly related for finer textured soil. 3. The soil erodibilty factor K values for Universal soil loss equation were 0.32 for Jeonnam, 0.22 for Samgag, 0.17 for Sangju, 0.15 for Yesan, and 0.13 for Songjeong respectively. These values were close to those from Wischmeier's nomograph. So, it seems that the nomograph is useful for estimation of soil loss in Korea.

  • PDF