• 제목/요약/키워드: sandy loam

검색결과 625건 처리시간 0.024초

몇 발근환경인자(發根環境因子)가 주목삽수(揷穗) 발근(發根)에 미치는 효과(効果) (Effects of Some Environmental Factors on Japanese Yew (Taxus cuspidata Sieb. et Zucc.))

  • 김창호;남정칠
    • 한국산림과학회지
    • /
    • 제70권1호
    • /
    • pp.1-6
    • /
    • 1985
  • 주목(朱木)(Taxus cuspidata Sieb. et Zucc)의 휴안지삽수(休眼枝揷穗)를 1982년(年) 4월(月) 20일(日)에 온실내(温室內)와 포지조건(圃地條件)에서 삽목(揷木), 당년(當年) 10월(月) 31일(日)에 발근개체(發根個體)를 가지고 평균발근율(平均發根率)을 계산(計算)하여 통계분석(統計分析)하였다. 본(本) 실험(實驗)의 목적(目的)은 원예적(園藝的)으로 가치(價値)를 평가(評價)받고 있음에 착안하여 가장 합리적(合理的)인 삽목조건(揷木條件)을 찾아내는 데 있다. 결과(結果)를 요약(要約)하면 다음과 같다. 1) 온실내삽목(温室內揷木)은 포지삽목(圃地揷木)에 비해 평균발근율(平均發根率)이 높았다. 이것은 처리별(處理別)의 차이(差異)에 불구하고 같은 경향(傾向)을 나타내었다. 2) IBA처리구(處理區)는 무처리구(無處理區)에 비해 더 높은 평균발근율(平均發根率)을 보였다. 온실내삽목(温室內揷木)의 경우 IBA처리구(處理區)는 평균발근율(平均發根率) 86%, 무처리구(無處理區) 23%, 포지삽목(圃地揷木)인 경우 IBA처리구(處理區) 53%, 무처리구(無處理區) 11%이다. 이것은 모두 삽수장(揷穗長) 20cm, 그리고 사토배지(砂土培地)에 삽목(揷木)되었을 경우이다. 3) 삽목배지(揷木培地)로서 사토(砂土), 양토(壤土), 갈색토(褐色土) 중(中) 온실내삽목(温室內揷木)이나 포지삽목(圃地揷木) 공히 사토구(砂土區)가 가장 높은 발근율(發根率)을 보였다. 4) 삽수장(揷穗長)이 발근(發根)에 마치는 영향을 분석(分析)한 바 15~20cm가 발근(發根)에 적당하고 25cm 이상은 발근율(發根率)이 떨어지는 것으로 나타났다. 5) 고찰(顧察)에 의한 발근양식(發根樣式)은 삽수하단절단면(揷穗下端切斷面)에 켈루스세포괴(細胞塊)가 생기고 그 안에 근기(根基)가 만들어져 근계형성(根系形成)에 관여하는 경우와 삽수(揷穗)의 경부(莖部)에 측근(側根)모양으로 나타나는 불정근(不定根)의 경우이다.

  • PDF

극초단파(마이크로파)와 첨가제를 이용한 오염토양 내 준휘발성 유기오염물질 제거 (Removal of Semi-volatile Soil Organic Contaminants with Microwave and Additives)

  • 정상조;최형진
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제18권1호
    • /
    • pp.67-77
    • /
    • 2013
  • To improve the energy efficiency of conventional thermal treatment, soil remediation with microwave has been studied. In this study, the remediation efficiency of contaminated soil with semi-volatile organic contaminants were evaluated with microwave oven and several additives such as water, formic acid, iron powder, sodium hydroxide (NaOH) solution, and activated carbon. For the experiment, loamy sand and sandy loam collected from Imjin river flood plain were intentionally contaminated with hexachlorobenzene and phenanthrene, respectively. The contaminated soils were treated with microwave facility and the mass removals of organic contaminants from soils were evaluated. Among additives that were added to increase the remediation efficiency, activated carbon and NaOH solution were more effective than water, iron powder, and formic acid. When 10 g of hexachlorobenzene (142.4 mg/kg-soil) or phenanthrene (2,138.8 mg/kg-soil) contaminated soil that mixed with 0.5 g iron powder, 0.5 g activated carbon and 1 ml 6.25 M NaOH solution were treated with microwave for 3 minutes, more than 95% of contaminants were removed. The degradation of hexachlorobenzene during microwave treatments with additives was confirmed by the detection of pentachlorobenzene and tetrachlorobenzene. Naphthalene and phenol were also detected as degradation products of phenanthrene during microwave treatment with additives. The results showed that adding a suitable amount of additives for microwave treatments fairly increased the efficiency of removing semi-volatile soil organic contaminants.

지표와 지중 퇴비 시비에 따른 토양에서의 분변성 미생물 생존성 비교 (Comparison of Fecal Microbes' Survival in Soil between Compost Surface Application and Soil Incorporation)

  • 전상민;송인홍;김계웅;황순호;강문성
    • 한국농공학회논문집
    • /
    • 제57권3호
    • /
    • pp.1-7
    • /
    • 2015
  • The objective of this study was to compare fecal microbes survival in soil between compost surface application and soil incorporation. The survival experiment was conducted in six styrofoam beds ($510{\times}325{\times}305(mm)$ in size) filled with sandy loam soil. A half of six boxes were received by compost surface application, while the other half were treated with compost-soil mixture. Duplicated surface and surbsurface soil (20 cm depth) samples were collected at various interval up to 50 days and analyzed for the determination of fecal coliforms and E. coli numbers. As expected, surface applied beds demonstrated two to three magnitudes order greater in both the study microorganisms as compared to soil incorporated beds. Microbial inactivation rate of soil surface was twice as great as subsurface soil condition probably due to exposure to sun light and environmental conditions including moisture loss. When rainfall occurred, microbes on the surface were transported into soil along with water movement. It was concluded that surface compost application may be easier to apply but pose higher risk of human exposure to microbes. Winter compost application may be favorable in alleviating health risk by giving some time for inactivation compared to spring application.

무경운 밭에서의 비점오염물질 저감효과 분석 (Analysis of NPS Pollution reduction from No-till Field)

  • 이수인;원철희;신민환;신재영;전제홍;최중대
    • 한국농공학회논문집
    • /
    • 제57권4호
    • /
    • pp.51-59
    • /
    • 2015
  • Various Best Management Practices (BMPs) have been suggested to reduce soil erosion and non point source (NPS) pollutant loads from agricultural fields. However, very little research regarding water quality improvement with No-till (NT) has been performed in Korea. Thus, effects of NT were investigated in this study. The objective of the study was to investigate the effect of NT on the surface runoff and sediment discharge in a field. Eight experimental plots of $5{\times}30m$ in size and 3 % or 8 % in slope prepared on gravelly sandy loam soil were treated with Conventional-till (CT) and NT. Runoff and NPS pollution discharge were monitored and compared the treatments. The amounts of rainfall from 13 monitored events ranged from 28.7 mm to 503.5 mm. The runoff amount was reduced by 17.6~59.2 % in 3 % NT and 29.6~53.2 % in 8 % NT. The average NPS pollution loads of the 3 % NT plots and 8 % NT plot were reduced about 45.1~89.2 % and 47.7~98.0 % compared to those of the CT plots, respectively. This research revealed that NT can reduce the NPS pollution loads substantially as well as increase the crop yield. Runoff and NPS pollution loads reduction by NT method could be contribute to improve the water quality of streams in agricultural regions.

오염토양내 석유계 총탄화수소 분석을 위한 추출방법의 비교 (Comparison of Extraction Methods for the Analysis of Total Petroleum Hydrocarbons in Contaminated Soil)

  • Eui-Young Hwang;Wan Namkoong;Jung-Young Choi
    • 한국토양환경학회지
    • /
    • 제5권2호
    • /
    • pp.45-53
    • /
    • 2000
  • 본 연구에서는 오염토양내 석유계 총탄화수소를 분석하기 위한 추출방법을 비교하였다. 사용된 토양은 사질양토였으며 석유계 총탄화수소로는 디젤오일을 선정하였다. 토양내 디젤오일의 오염농도는 건조질량기준으로 100, 10,000, 50,000mgTPH/kg이었다. 오염토양내 석유계 총탄화수소를 추출하는데 있어서 진탕교반에 의한 추출법이 속시렛장치를 이용한 추출법보다 전반적으로 높은 회수율을 보였다. 진탕교반추출법에서 시료와 용매의 비율을 1 : 5(w/v)로 하여 2시간 동안 진탕교반하였을 때 석유계 총탄화수소의 회수율이 가장 높았다. 동일조건에서 100mg/kg과 50,000mg/kg으로 오염된 토양을 진탕교반추출한 경우 각각 95.9%와 95.5%의 회수율을 보였다. 사용된 용매의 손실량을 측정해 본 결과 진탕추출법이 속시렛추출법에서 보다 손실량이 적었다.

  • PDF

포트 재배에 의한 화약물질 오염토양 정화용 내오염성 식물 선정 (Selection of Tolerant Plant Species using Pot Culture for Remediation of Explosive Compounds Contaminated Soil)

  • 이아름;배범한
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제20권6호
    • /
    • pp.73-84
    • /
    • 2015
  • Nine plant species were selected through vegetation survey at three military shooting ranges at northern Gyeonggi Province. Plants were germinated in normal soil and three seedlings were transplanted to a bottom sealed pot containing sandy loam soils contaminated with either RDX (291 mg/kg) or TNT (207 mg/kg). Planted, blank (without plant), and control (without explosive compound) pots were grown in triplicate at a green house for 134 days. During cultivation, transplanted plants exhibited chlorosis and necrosis in flower and leaf by explosive toxicity and stress. Only three plants, Wild soybean, Amur silver grass, Reed canary grass, survived in TNT treated pot, while seven plant species except for field penny cress and jimson weed, thrived in RDX treated pot. Appreciable amount of TNT (61.6~241.2 mg/g-D.W.) was detected only in plant roots. Up to 763.3 mg/g-D.W. along with 4-amino-2,6-dinitrotoluene, an intermediate of TNT, accumulated in the root of wild soybean. In addition, azoxy compounds, abiotic intermediates of TNT, were detected in TNT treated soils. RDX absorbed average 1,839.95 mg/kg in shoot and 204.83 mg/kg in root. Most of TNT in plant was accumulated in underground part whereas RDX was localized in aerial part. Material balance calculation showed that more than 95% of the initial TNT was removed in the planted pots whereas only 60% was removed in the blank pot. The amount of RDX removed from soil was in the order of Amur Silver Grass (51%) > Chickweed (43%) > Evening primrose (38%). Based on the results of pot cultures, Amur silver grass and Reed canary grass are selected as tolerant remedial plants for explosive toxicity.

Managing Soil Organic Matter and Salinity by Crop Cultivation in Saemangeum Reclaimed Tidal Land

  • Bae, Hui Su;Jang, Hyeonsoo;Hwang, Jae Bok;Park, Tae Seon;Lee, Kyo Suk;Lee, Dong Sung;Chung, Doug Young
    • 한국토양비료학회지
    • /
    • 제51권1호
    • /
    • pp.50-60
    • /
    • 2018
  • This study was to evaluate the effect of organic amendments incorporation on soil properties and plant growth under two different soil salinity levels and various cultivated crops at Saemangeum reclaimed tidal land for three years from 2012 to 2014. The soil texture of the experimental site was sandy loam. Four different crops, sesbania (Sesbania grandiflora), sorghum-sudangrass hybrid (Sorghum bicolor-Sorghum sudanense), rice (Oryza sativa L.) and barley (Hordeum vulgare) were cultivated at low (< $1dS\;m^{-1}$) and high (> $4dS\;m^{-1}$) soil salinity levels. The soil salinity was significantly lowered at the rice cultivation site compared to continuous upland crops cultivation site in high soil salinity level. But the soil salinity was increased as cultivating sesbania coutinuously in low soil salinity level. The soil organic matter content was increased with the incorporation of straw at the continuous site of rice and barley, and the average of soil organic matter was increased by $0.9g\;kg^{-1}$ per year which was effective in soil aggregate formation. The highest biomass yield plot was found in barley (high salinity level) and sesbania (low salinity level) cultivation site, respectively. Our research indicates that rice cultivation in paddy field with high salinity level was effective in lowering soil salinity and sesbania cultivation was useful to biomass production at upland with low salinity. In conclusion, soil salinity and organic matter content should be considered for multiple land use in newly reclaimed tidal land.

타이어 접지압과 토양속 응력분포에 관한 연구 (A Study on Soil Stress and Contact Pressure of Tire)

  • 박원엽;이규승
    • Journal of Biosystems Engineering
    • /
    • 제26권3호
    • /
    • pp.245-252
    • /
    • 2001
  • This study was carried out to investigate the effect of three factors(dynamic load, inflation pressure and multiple passes of the tire) on the contact pressure and the soil stresses under the tire. A series of soil bin experiment was conducted with a 6.00R14 radial-ply tire for sandy loam soil. Tire contact pressure at soil surface and soil stresses at 10cm and 20cm soil depth were measured for the three levels of dynamic load(1.17kN, 2.35kN and 3.53kN), for the three levels of tire inflation pressure(103.42kPa, 206.84kPa and 413.69kPa), and for five different number of passes(1, 2, 3, 4 and 5 pass). The following results were drawn from this study 1) As dynamic load, inflation pressure and number of passes of the tire increased, tire contact pressure at soil surface and soil stresses at 10cm and 20cm soil depth increased accordingly. Thus increased in dynamic load, inflation pressure and number of passes of the tire would increase soil compaction. 2) The effect of three different factors, or dynamic load, inflation pressure and number of passes of the tire, decreased as the soil depth increase. Consequently, it was found that the soil compaction at a shallow depth in soil is larger than that at deep place in soil. 3) The increase of dynamic load and number of passes increased soil stress exponentially, but the increase of inflation pressure increased soil stress linearly. The effect of tire inflation pressure on soil stress was relatively less than that of the dynamic load. Therefore, it was concluded that dynamic load is more important factor affecting soil compaction in comparison to the inflation pressure of tire.

  • PDF

환경인자가 토양내 석유계탄화수소의 분해에 미치는 영향 (Effect of Environmental Parameters on the Degradation of Petroleum Hydrocarbons in Soil)

  • 황의영;남궁완;박준석
    • 한국토양환경학회지
    • /
    • 제5권1호
    • /
    • pp.85-96
    • /
    • 2000
  • 본 연구의 목적은 수분함량 및 온도변화가 석유계탄화수소의 분해에 미치는 영향을 살펴보는 것이었다. 연구에 사용된 토양은 사질양토였으며 대상오염물질은 디젤오일이었다. 디젤오일의 초기오염농도는 건조질량기준으로 10,000mgTPH/kg이었다. 수분함량은 토양 수분보유능력의 50%, 70%그리고 90%로 조절하였으며 온도는 $5^{\circ}C$, $10^{\circ}C$, $20^{\circ}C$, 그리고 $30^{\circ}C$로 변화시켰다. 석유계 총탄화수소의 분해는 수분함량이 수분보유능력의 50%와 70%에서 활발하게 일어났다. 온도는 10~3$0^{\circ}C$에서 석유계 총탄화수소의 분해가 활발하였으며 5$^{\circ}C$에서는 상대적으로 분해속도가 느리게 나타났다. 노르말알칸류의 분해속도는 석유계 총탄화수소에 비하여 약 2배 정도 빠르게 나타났다. 휘발에 의하여 손실된 석유계 총탄화수소는 초기 농도의 약 2% 내외였다. 대조실험으로서 공기공급을 하지 않은 경우와 biocide로 $HgCl_2$를 첨가한 경우에 석유계 총탄화수소의 분해가 미미하여 석유계 총탄화수소가 호기성조건하에서 생물학적 반응에 의하여 분해되었음을 보여주었다.

  • PDF

Simulation of Soil Hydrological Components in Chuncheon over 30 years Using E-DiGOR Model

  • Aydin, Mehmet;Jung, Yeong-Sang;Yang, Jae-E.;Lee, Hyun-Il;Kim, Kyung-Dae
    • 한국토양비료학회지
    • /
    • 제45권4호
    • /
    • pp.484-491
    • /
    • 2012
  • The hydrological components of a sandy loam soil of nearly level in Chuncheon over 30 years were computed using the E-DiGOR model. Daily simulations were carried out for each year during the period of 1980 to 2009 using standard climate data. Reference evapotranspiration and potential soil evaporation based on Penman-Montheith model were higher during May to August because of the higher atmospheric evaporative demand. Actual soil evaporation was mainly found to be a function of the amount and timing of rainfall, and presumably soil wetness in addition to atmospheric demand. Drainage was affected by rainfall and increased with a higher amount of precipitation and soil water content. Excess drainage occurred throughout rainy months (from July to September), with a peak in July. Therefore, leaching may be a serious problem in the soils all through these months. The 30-year average annual reference evapotranspiration and potential soil evaporation were 951.5 mm and 714.2 mm, respectively. The actual evaporation from bare soil varied between 396.9-528.4 mm and showed comparatively lesser inter-annual variations than drainage. Annual drainage rates below 120 cm soil depth ranged from 477.8 to 1565.9 mm. The long-term mean annual drainage-loss was approximately two times higher than actual soil evaporation.