• Title/Summary/Keyword: sandwich type

Search Result 296, Processing Time 0.022 seconds

A new five unknown quasi-3D type HSDT for thermomechanical bending analysis of FGM sandwich plates

  • Benbakhti, Abdeldjalil;Bouiadjra, Mohamed Bachir;Retiel, Noureddine;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.22 no.5
    • /
    • pp.975-999
    • /
    • 2016
  • This work investigates a thermomechanical bending analysis of functionally graded sandwich plates by proposing a novel quasi-3D type higher order shear deformation theory (HSDT). The mathematical model introduces only 5 variables as the first order shear deformation theory (FSDT). Unlike the conventional HSDT, the present one presents a novel displacement field which includes undetermined integral variables. The mechanical properties of functionally graded layers of the plate are supposed to change in the thickness direction according to a power law distribution. The core layer is still homogeneous and made of an isotropic ceramic material. The governing equations for the thermomechanical bending investigation are obtained through the principle of virtual work and solved via Navier-type method. Interesting results are determined and compared with quasi-3D and 2D HSDTs. The influences of functionally graded material (FGM) layer thickness, power law index, layer thickness ratio, thickness ratio and aspect ratio on the deflections and stresses of functionally graded sandwich plates are discussed.

Design of sandwich type piezoelectric resonator for underwater acoustic transducer (수중 음향 트랜스듀서용 샌드위치형 압전 진동체의 설계)

  • 조치영;김인수;윤형규
    • Journal of KSNVE
    • /
    • v.5 no.4
    • /
    • pp.577-583
    • /
    • 1995
  • The sandwich type piezoelectric resonator is widely used for the acoustic sources of underwater acoustic transducers, whose important design parameters are shapes, materials, dimensions and supporting methods. Practical design method of resonators consists of manufacturing, experiments and modification so that it requires much time and expenses. In this study, an analytical design method of sandwich type piezoelectric resonators is presented based on the nonlinear optimization technique. The proposed method is applied to the design of an example resonator model in order to maximize the output powers. For the investigation of performance according to the division and their electrical connection, three types of resonators are manufactured. In addition, their dynamic characteristics such as electrical admittance and transmitting voltage response are measured and compared.

  • PDF

A Study on the Structural Shape and Vibrational Characteristics of Aluminum Sandwich Panel (알루미늄 샌드위치 패널의 구조적 형상 및 진동 특성에 관한 연구)

  • Bae, Dong-Myung;Son, Jung-Dae
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.40 no.4
    • /
    • pp.351-359
    • /
    • 2004
  • Aluminum honeycomb sandwich panel (AHSP) not only have high flexural rigidity and strength per density but also excellence in anti-vibration and anti-noise properties. Their properties are very useful for build airplane and high speed crafts, which need lighter-weighted and more strengthed element. Recently, the AHSP is regarded as a promising strength member of light structures like the hull of high speed crafts. Generally, the core shape of aluminum sandwich panel (ASP) is the hexagonal shape of honeycomb. But, in this paper, authors proposed the ASP with pyramid core, as the ASP model of new type, and analysed the structural and vibrational characteristics for aluminum pyramid sandwich panel (APSP) as this new ASP type, according to the thickness variation of core and face, the height variation of core. The applied sandwich models have isotropic and symmetrical aluminum faces and pyramid cores. And, the applied boundary conditions are simple, fixed and free support.

Investigation on Adhesion Properties of Sandwich Composite Structures Considering on Surface Treatments

  • Park, Gwanglim;Oh, Kyungwon;Kong, Changduk;Park, Hyunbum
    • International Journal of Aerospace System Engineering
    • /
    • v.1 no.1
    • /
    • pp.16-20
    • /
    • 2014
  • Recently, various kinds of study on light weight structure are performing in the world. The Al honeycomb sandwich structural type adopt for improvement of lightness and structural stability to major part structure of aircraft or spacecraft. Adhesion badness properties of adhesive and adhesion properties of fillet mainly studied about al honeycomb structure. But study for adhesive properties of sandwich construction with surface treatment of Aluminum alloy barely performed. In this study, adhesive film was used between Al and honeycomb core of honeycomb panel[1]. The study for adhesive properties of sandwich construction with surface treatment of AA 5052 skin was performed.

Study of reinforcement effect of sandwich plate structure according to core shape (샌드위치형 판 구조물의 코어형상에 따른 보강효과에 관한 연구)

  • 한근조;안성찬;심재준;김진영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.740-743
    • /
    • 2001
  • Sandwich structure is widely used in various fields of industry due to its excellent strength and stiffness compared with weight. We studied the sandwich structure which has honeycomb core type. We are concerned about its buckling and bending stress with respect to its side length, thickness and the height ratio of its unit core. After obtaining the buckling critical load of unit core, we applied it to the sandwich structure to observe the bending behavior. When we compared the buckling with bending stress under buckling critical load, we observed that models of which length ratio of unit honeycomb core, A, is lower than 0.04 and the thickness of core, t, is thicker than 0.09 mm, is subjected to the ultimate stress by bending before buckling.

  • PDF

A Study on the Structural Strength Analysis according to the Core Shapes of Aluminum Sandwich Panels (알루미늄 샌드위치패널의 심재 형상에 따른 구조강도해석)

  • 배동명;손정대
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.277-284
    • /
    • 2001
  • Recently, with development of mechanics of materials, as pursuing the high speed of the ships, a demanding of composite construction which satisfies high strength and low weight at the same time is iner casing. A sandwich element is a type of composite construction, which is composed of thin, strong, stiff and relatively high density faces and a think, light, and weaker core material. As 2nd moment is increased by faces is separated from the neutral axis farther, a sandwich element is most effective light structural form. In this paper, the make a comparative study Aluminum Honeycomb Sandwich Panel(AHSP) and Aluminum Pyramid Sandwich Panel(APSP).

  • PDF

An analytical method for free vibration analysis of functionally graded sandwich beams

  • Bouakkaz, K.;Hadji, L.;Zouatnia, N.;Adda Bedia, E.A.
    • Wind and Structures
    • /
    • v.23 no.1
    • /
    • pp.59-73
    • /
    • 2016
  • In this paper, a hyperbolic shear deformation beam theory is developed for free vibration analysis of functionally graded (FG) sandwich beams. The theory account for higher-order variation of transverse shear strain through the depth of the beam and satisfies the zero traction boundary conditions on the surfaces of the beam without using shear correction factors. The material properties of the functionally graded sandwich beam are assumed to vary according to power law distribution of the volume fraction of the constituents. The core layer is still homogeneous and made of an isotropic material. Based on the present refined beam theory, the equations of motion are derived from Hamilton's principle. Navier type solution method was used to obtain frequencies. Illustrative examples are given to show the effects of varying gradients and thickness to length ratios on free vibration of functionally graded sandwich beams.

Nonlinear stability analysis of porous sandwich beam with nanocomposite face sheet on nonlinear viscoelastic foundation by using Homotopy perturbation method

  • Rostamia, Rasoul;Mohammadimehr, Mehdi
    • Steel and Composite Structures
    • /
    • v.41 no.6
    • /
    • pp.821-829
    • /
    • 2021
  • Nonlinear dynamic response of a sandwich beam considering porous core and nano-composite face sheet on nonlinear viscoelastic foundation with temperature-variable material properties is investigated in this research. The Hamilton's principle and beam theory are used to drive the equations of motion. The nonlinear differential equations of sandwich beam respect to time are obtained to solve nonlinear differential equations by Homotopy perturbation method (HPM). The effects of various parameters such as linear and nonlinear damping coefficient, linear and nonlinear spring constant, shear constant of Pasternak type for elastic foundation, temperature variation, volume fraction of carbon nanotube, porosity distribution and porosity coefficient on nonlinear dynamic response of sandwich beam are presented. The results of this paper could be used to analysis of dynamic modeling for a flexible structure in many industries such as automobiles, Shipbuilding, aircrafts and spacecraft with solar easured at current time step and the velocity and displacement were estimated through linear integration.

On dynamic deflection analysis of sandwich beams under thermal and pulse loads

  • Mamoon A.A. Al-Jaafari;Haider Ali Hussein;Abdulaziz Saud Khider;Raad M. Fenjan;Nadhim M. Faleh
    • Steel and Composite Structures
    • /
    • v.46 no.2
    • /
    • pp.195-202
    • /
    • 2023
  • Dynamic deflection analysis of sandwich beams with cellular core under thermal and pulse loads has been performed in the present article. The cellular core sandwich beam has two layers fortified by graphene oxide powder (GOP) which are micromechanically modeled by Halpin-Tsai formulation. The pulse load has blast type and is applied on the top side of sandwich beam. The system of equations has been developed based on higher-order beam theory and Ritz method. Then, they are solved in Laplace domain to derive the dynamic deflections. The dependency of beam deflection on temperature variation, GOP content, pulse load duration/location and core relative density has been studied in detail.

Low Velocity Impact Behavior of Metallic Sandwich Plate with a Truss Core (트러스형 내부구조를 가지는 샌드위치 판재의 저속 충격 특성 연구)

  • Jung, Chang-Gyun;Seong, Dae-Yong;Yang, Dong-Yol;Kim, Jin-Suck;Ahn, Dong-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.10
    • /
    • pp.80-87
    • /
    • 2006
  • Metallic sandwich plate with a truss core has metallic inner structures which have low relative density between a pair of metal skin sheets or face sheets. In this work, low impact tests have been carried out to examine the behavior of sandwich plates with a pyramidal truss core. For the low velocity impact, the impact apparatus of drop weight type has been fabricated. From the results of the experiments, maximum energy absorption is found to happen when the upper sheet fails. The sandwich plate loses its absorption ability as soon as the inner structures have been crashed completely and optimal core thickness has existed to maximize energy absorption. Comparing the metallic sandwich plate with the monocoque plate, the absorbed energy has been improved up to 160 % and the deflection decreased by up to 76%. As a result, the metallic sandwich plate with a truss core is shown to have good material for impact resistance and energy absorption.