• Title/Summary/Keyword: sandwich type

Search Result 296, Processing Time 0.025 seconds

A new higher-order shear and normal deformation theory for the buckling analysis of new type of FGM sandwich plates

  • Chikr, Sara Chelahi;Kaci, Abdelhakim;Yeghnem, Redha;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.72 no.5
    • /
    • pp.653-673
    • /
    • 2019
  • This work investigates a novel quasi-3D hyperbolic shear deformation theory is presented to discuss the buckling of new type of sandwich plates. This theory accounts for both shear deformation and thickness stretching effects by a hyperbolic variation of all displacements through the thickness. The enhancement of this formulation is due to the use of only five unknowns by including undetermined integral terms, contrary to other theories where we find six or more unknowns. It does not require shear correction factors and transverse shear stresses vary parabolically across the thickness. A new type of FGM sandwich plates, namely, both FGM face sheets and FGM hard core are considered. The governing equations and boundary conditions are derived using the principle of virtual displacements. Analytical solutions are obtained for a simply supported plate. The accuracy of the present theory is verified by comparing the obtained results with quasi-3D solutions and those predicted by higher-order shear deformation theories. The comparison studies show that the obtained results are not only more accurate than those obtained by higher-order shear deformation theories, but also comparable with those predicted by quasi-3D theories with a greater number of unknowns.

Experimental research on sagging bending resistance of steel sheeting-styrofoam-concrete composite sandwich slabs

  • Cao, P.Z.;Lu, Y.F.;Wu, Kai
    • Steel and Composite Structures
    • /
    • v.15 no.4
    • /
    • pp.425-438
    • /
    • 2013
  • A new-styrofoam-concrete composite sandwich slab with function of heat insulation is designed. Four full-scale simply supported composite sandwich slabs with different shear connectors are tested. Parameters under study are the thickness of the concrete, the height of profiled steel sheeting, the influence of shear connectors including the steel bars and self-drilling screws. Experimental results showing that four specimens mainly failed in bending failure mode; the shear connectors can limit the longitudinal slippery between the steel profiled sheeting and the concrete effectively and thus guarantee the good composite action and cooperative behavior of two materials. The ultimate sagging bending resistance can be determined based on plastic theory. This new composite sandwich slab has high sagging bending resistance and good ductility. Additionally, these test results help the design and application of this new type of composite sandwich slab.

A Study on the Compressive Characteristics of Sandwich Sheet with Pyramid Core in the Thickness Direction (피라미드 코어를 가진 샌드위치 판재의 두께 방향 압축 특성에 대한 연구)

  • Cho, K.C.;Kim, J.Y.;Kim, J.H.;Chung, W.J.
    • Transactions of Materials Processing
    • /
    • v.15 no.9 s.90
    • /
    • pp.635-640
    • /
    • 2006
  • Sandwich sheet with inner structure is expected to find many applications because of high stiffness to mass ratio. However, low resistance to the compressive pressure in the thickness direction is a dominating factor in the formability of sandwich sheet. In this study, sandwich sheet with pyramid type core is considered. For the compressive characteristics in the thickness direction, experiments and finite element simulations are carried out. In the experiment, deformation behavior is observed and discussed as the compression proceeds. It is shown that a corresponding finite element simulation can give a reasonable agreement with experiment in terms of maximum pressure. However, simulation shows some discrepancy from the experiment in terms of compressive pressure-displacement characteristics. The reasons for this discrepancy are studied in the geometrical imperfectness of sandwich sheet. It is also observed that most of deformation is dominated by buckling mode of pyramid legs.

Adhesion Characteristics of Surface Treated Polyurethane Foam Core Sandwich Structures (표면 처리된 폴리우레탄 폼 샌드위치 구조의 접합 특성)

  • Lee, Chang-Sup;Lim, Tae-Seong;Lee, Dai-Gil
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.38-43
    • /
    • 2001
  • The interfacial adhesive joining characteristics of the foams are very important for the structural integrity of sandwich structures. Peel strength is one of the best criteria for the interfacial characteristics of the sandwich structures and peel energy is most commonly used for the interfacial characteristics. The peel strength is the first peak force per unit width of bond line required to produce progressive separation by the wedge or other crack opening type action of two adherends where one or both undergo significant bending and the peel energy is the surface active energy per unit width of bond line. In this work, to investigate the strengthening effect of resin treatment on the interfacial surface of foam material, peel strength and peel energy of epoxy resin treated polyurethane foam core sandwich structures were obtained by the cleavage peel tests and compared with those of non surface treated polyurethane foam core sandwich structures.

  • PDF

Analysis on the buckling of imperfect functionally graded sandwich plates using new modified power-law formulations

  • Zohra, Abdelhak;Benferhat, Rabia;Tahar, Hassaine Daouadji;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.77 no.6
    • /
    • pp.797-807
    • /
    • 2021
  • A new simple solution for critical buckling of FG sandwich plates under axial and biaxial loads is presented using new modified power-law formulations. Both even and uneven distributions of porosity are taken into account in this study. Material properties of the sandwich plate faces are assumed to be graded in the thickness direction according to a modified power-law distribution in terms of the volume fractions of the constituents. Equilibrium and stability equations of FG sandwich plate with various boundary conditions are derived using the higher-order shear deformation plate theory. The results reveal that the distribution shape of the porosity, the gradient index, loading type and functionally graded layers thickness have significant influence on the buckling response of functionally graded sandwich plates.

Transient dynamic analysis of sandwich beam subjected to thermal and pulse load

  • Layla M. Nassir;Mouayed H.Z. Al-Toki;Nadhim M. Faleh;Hussein Alwan Khudhair;Mamoon A.A. Al-Jaafari;Raad M. Fenjan
    • Steel and Composite Structures
    • /
    • v.51 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • Transient dynamic behavior of a sandwich beam under thermal and impulsive loads has been researched in the context of higher-order beam theory. The impulse load of blast type has been enforced on the top exponent of the sandwich beam while it is in a thermal environment. The core of the sandwich beam is cellular with auxetic rectangular pattern, whereas the layers have been built with the incorporation of graphene oxide powder (GOP) and are micromechanically introduced through Halpin-Tsai formulization. Governing equations for the sandwich beam have been solved through inverse Laplace transform style for obtaining the dynamical deflections. The connection of beam deflections on temperature variability, GOP quantity, pulse load situation and core relative density has been surveyed in detail.

Investigation of thermal buckling properties of ceramic-metal FGM sandwich plates using 2D integral plate model

  • Salah, Fethi;Boucham, Belhadj;Bourada, Fouad;Benzair, Abdelnour;Bousahla, Abdelmoumen Anis;Tounsi, Abdeldjebbar
    • Steel and Composite Structures
    • /
    • v.33 no.6
    • /
    • pp.805-822
    • /
    • 2019
  • In this work, a simple four-variable integral plate theory is employed for examining the thermal buckling properties of functionally graded material (FGM) sandwich plates. The proposed kinematics considers integral terms which include the effect of transverse shear deformations. Material characteristics and thermal expansion coefficient of the ceramic-metal FGM sandwich plate faces are supposed to be graded in the thickness direction according to a "simple power-law" variation in terms of the "volume fractions" of the constituents. The central layer is always homogeneous and consists of an isotropic material. The thermal loads are supposed as uniform, linear, and nonlinear temperature rises within the thickness direction. The influences of geometric ratios, gradient index, loading type, and type sandwich plate on the buckling properties are examined and discussed in detail.

The Back Side Temperature Variation According to Color of Sandwich Panel and Internal Core Material (샌드위치 패널의 외부 색상과 내부 심재에 따른 이면 온도 변화)

  • Park, Jun-Seo;Kim, Bong-Joo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.25-26
    • /
    • 2023
  • The internal core material and external color of a sandwich panel have a significant impact on the performance of the sandwich panel. For use on roofs and walls, the internal core material and external color must be considered. Therefore, the surface and back side temperatures were measured for each exterior color and inner core material type. For the internal core materials, urethane foam and Expanded Poly Styrene(EPS), which are core materials mainly used in sandwich panels, were selected. As colors, black and ivory were selected according to brightness, and a total of five colors were selected: red, blue, and green, which are the three primary colors of light. As a result, there were differences in surface and temperature depending on the external color and type of internal core material. Regardless of the color, the temperature was measured lower for panels with urethane foam than for panels with an internal core of EPS. This is believed to have been influenced by the difference in thermal conductivity of urethane foam being 0.023W/(m·K) and that of EPS being 0.032W/(m·K). In addition, panels with a black exterior color were found to have higher surface and back temperatures than panels of other colors, and ivory-colored panels had lower back temperatures regardless of the core material. This is proportional to the brightness and light-absorbing characteristics.

  • PDF

Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate using energy principle

  • Medani, Mohammed;Benahmed, Abdelillah;Zidour, Mohamed;Heireche, Houari;Tounsi, Abdelouahed;Bousahla, Abdelmoumen Anis;Tounsi, Abdeldjebbar;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.32 no.5
    • /
    • pp.595-610
    • /
    • 2019
  • This paper deals with the static and dynamic behavior of Functionally Graded Carbon Nanotubes (FG-CNT)-reinforced porous sandwich (PMPV) polymer plate. The model of nanocomposite plate is investigated within the first order shear deformation theory (FSDT). Two types of porous sandwich plates are supposed (sandwich with face sheets reinforced / homogeneous core and sandwich with homogeneous face sheets / reinforced core). Functionally graded Carbon Nanotubes (FG-CNT) and uniformly Carbon Nanotubes (UD-CNT) distributions of face sheets or core porous plates with uniaxially aligned single-walled carbon nanotubes are considered. The governing equations are derived by using Hamilton's principle. The solution for bending and vibration of such type's porous plates are obtained. The detailed mathematical derivations are provided and the solutions are compared to some cases in the literature. The effect of the several parameters of reinforced sandwich porous plates such as aspect ratios, volume fraction, types of reinforcement, number of modes and thickness of plate on the bending and vibration analyses are studied and discussed. On the question of porosity, this study found that there is a great influence of their variation on the static and vibration of porous sandwich plate.

Canard Type Aircraft Structural Test (선미익형 항공기 구조시험)

  • Kim, Jin-Won;Ahn, Soek-Min;Jung, Do-Hee;Song, Byung-Heum
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.13 no.3
    • /
    • pp.97-109
    • /
    • 2005
  • A canard type aircraft, which has good wing stall and stall/spin-proof characteristics, is under development. The aircraft prototype has full-depth core sandwich type wing and fixed landing gear, and has been built for test flights. Newly developing aircraft will be equipped with retractable landing gear and conventional foam core sandwich laminate structures and multi-rib wings. In this study, we present the structural test procedure and result for aircraft Firefly.

  • PDF