• Title/Summary/Keyword: sandwich panels

Search Result 209, Processing Time 0.029 seconds

Mechanical Properties and Structural Analyses for the Corrugated 3 Layered Sandwich Panels (코로게이트 3층 샌드위치 패널 구조체 물성 및 구조해석)

  • Yun, Su-Jin;Heo, Yeup;Gil, Hyun-Young;Park, Dong-Chang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.5
    • /
    • pp.75-89
    • /
    • 2019
  • In the present work, structural analyses for light weight corrugate 3 layered sandwich panels are carried out. The mechanical properties of the sandwich panels are obtained using the modified analytical closed form based on a corrugated panel deformation and the homogenization scheme of an uniaxial composite. Subsequently, the mechanical properties estimated by the two aforementioned methods were employed for the numerical analyses for the corrugated sandwich panels under the specifically loading conditions, and a comparison between two methods was also made.

A Study on Failure Evaluation of Korean Low Floor Bus Structures Made of Hybrid Sandwich Composite (하이브리드 샌드위치 복합재 초저상버스 구조물의 파손 평가 연구)

  • Lee, Jae-Youl;Shin, Kwang-Bok;Lee, Sang-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.6
    • /
    • pp.50-61
    • /
    • 2007
  • The structural stiffness, strength and stability on the bodyshell and floor structures of the Korean Low Floor Bus composed of laminate, sandwich panels and metal reinforced frame were evaluated. The laminate composite panel and facesheet of sandwich panel were made of WR580/NF4000 glass fabric/epoxy laminate, while aluminum honeycomb or balsa was applied to the core materials of the sandwich panel. A finite element analysis was used to verify the basic design requirements of the bodyshell and the floor structure. The use of aluminum reinforced frame and honeycomb core was beneficial for weight saving and structural performance. The symmetry of the outer and inner facesheet thickness of sandwich panels did not affect the structural integrity. The structural strength of the panels was evaluated using Von-Mises criterion for metal structures and total laminate approach criterion for composite structures. All stress component of the bodyshell and floor structures were safely located below the failure stresses. The total laminate approach is recommended to predict the failure of hybrid sandwich composite structures at the stage of the basic design.

An Experimental Study on the Development of Lightweight Foamed Concrete as Sandwich Panel Core (샌드위치 패널 심재용 경량기포콘크리트 개발에 관한 실험적 연구)

  • Lee, Sang-An;Chun, Woo-Young;Ko, Kwan-Ho;Kim, Wha-Jung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.557-560
    • /
    • 2008
  • This was done by analyzing the sandwich panels that are now widely used in construction work. Sandwich panels are used for diverse purposes in construction work worldwide. In Korea, polystyrene panels that have organic materials as their core material are used. These panels are thus very vulnerable to fire, with risks of core melting, sheet deformation, and hazardous gases. Accordingly, sandwich panels' fire-resistant or non-flammable properties must be secured. To solve these problems, the optimal mixing proportion of lightweight foamed concrete for the sandwich panel core was determined. A new method of doing this was introduced that is completely different from the existing method, wherein a foaming agent is added to realize lightweight concrete. For lightweight concrete, the foaming mechanisms via diverse chemical reactions were identified, H$_2$O$_2$ was added for heating in the reaction, and the concrete foaming was maximized. Through diverse experiments to determine the optimal mixing proportion of lightweight foamed concrete and to examine the filling characteristic of lightweight foamed concrete for sandwich panel cores using waste materials, the physical and mechanical properties of lightweight foamed concrete were examined.

  • PDF

Higher order flutter analysis of doubly curved sandwich panels with variable thickness under aerothermoelastic loading

  • livani, Mostafa;MalekzadehFard, Keramat;Shokrollahi, Saeed
    • Structural Engineering and Mechanics
    • /
    • v.60 no.1
    • /
    • pp.1-19
    • /
    • 2016
  • In this study, the supersonic panel flutter of doubly curved composite sandwich panels with variable thickness is considered under aerothermoelastic loading. Considering different radii of curvatures of the face sheets in this paper, the thickness of the core is a function of plane coordinates (x,y), which is unique. For the first time in the current model, the continuity conditions of the transverse shear stress, transverse normal stress and transverse normal stress gradient at the layer interfaces, as well as the conditions of zero transverse shear stresses on the upper and lower surfaces of the sandwich panel are satisfied. The formulation is based on an enhanced higher order sandwich panel theory and the vertical displacement component of the face sheets is assumed as a quadratic one, while a cubic pattern is used for the in-plane displacement components of the face sheets and the all displacement components of the core. The formulation is based on the von $K{\acute{a}}rm{\acute{a}}n$ nonlinear approximation, the one-dimensional Fourier equation of the heat conduction along the thickness direction, and the first-order piston theory. The equations of motion and boundary conditions are derived using the Hamilton principle and the results are validated by the latest results published in the literature.

A Study on Low-Velocity Impact Characterization of Various Sandwich Panels for the Korean Low Floor Bus Application (초저상 버스 차체 적용을 위한 샌드위치 패널들의 저속충격 특성 연구)

  • Lee, Jae-Youl;Lee, Sang-Jin;Shin, Kwang-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.4
    • /
    • pp.506-516
    • /
    • 2007
  • In this paper, a study on low-velocity impact response of four different sandwich panels for the hybrid bodyshell and floor structure application of the Korean low floor bus vehicle was done. Square samples of 100mm sides were subjected low-velocity impact loading using an instrumented testing machine at six energy levels. Impact parameters like maximum force, time to maximum force, deflection at maximum force and absorbed energy were evaluated and compared for four different types of sandwich panels. The impact damage size and depth of the permanent indentation were measured by 3-Dimensional Scanner. Failure modes were studied by sectioning the specimens and observed under optical microscope. The impact test results show that sandwich panel with composite laminate facesheet could not observe damage mode of a permanent visible indentation after impact and has a good impact damage resistance in comparison with sandwich panel with metal aluminum facesheet.

Structural Behavior of Sandwich Panels with Polymer Concrete Facings (폴리머 콘크리트 샌드위치 패널의 구조적 거동)

  • 연규석;함형길;김관호;이윤수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.10a
    • /
    • pp.261-266
    • /
    • 1993
  • This study was performed to evaluate the flexural behavior of polymer concrete sandwich panels which was made of unsaturated polymer resin. Bending tests under 4point loading was conducted for the 8 type of sandwich panel with different core and facing thickness. Results show that Load-Deflection, shearing force- shear strain, moment strength - strain relationships were effected by core and facing thickness.

  • PDF

Dynamic Behavior Analysis of a Satellite Having Sandwich Panel by Utilizing Asymptotic Homogenization (Asymptotic 균질화법을 활용한 샌드위치패널로 제작된 위성 구조체의 동적 거동 분석)

  • Cho, Hee Keun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.11
    • /
    • pp.1203-1210
    • /
    • 2013
  • Korea's first Naro-Science small class satellite was launched by Naro launcher in 2013. The structure of the satellite is mostly composed of aluminum honeycomb and frame. The honeycomb structure is homogenized with asymptotic homogenization method and its mechanical properties were used for the numerical analysis. There have been some difficulties to modeling the honeycomb sandwich panels for FEA. In the present study, the mechanical characteristics of the sandwich panel composite were numerically computed and used for the simulation. This methodology makes it easy to overcome the weakness of modeling of complicated sandwich panels. Both an experiment of vibration test and numerical analyses were conducted simultaneously. The analysis results from the current homogenization were compared with that of experiment. It shows a good agreement on the dynamic responses and certified the reliability of the present methodology when manipulate sandwich panel structure.

The Necessity of Structural Performance Informations of Sandwich Panels for The Stability of Industry Building using Sandwich Panel as Roof Assemblies. (지붕하중 증가에 따른 공장건물 안정성확보를 위한 지붕외장재의 구조성능정보의 필요성)

  • Kang, Kyung-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.725-730
    • /
    • 2017
  • The strength ratio of the main structures of buildings gradually increasing, due to the advances made in analysis and cost saving techniques. In this study, to examine the stability of industry buildings using sandwich panels as roof assemblies, we examine the changes in the moment strength ratio of the main structures caused by increasing the roof load. This study adopts the PEB structure and three H-steel structure as the structural analysis models. In the case where the additional load exceeds about 11% of the roof design load, the strength ratio exceeds 1 for the main structure. In the case where the additional load exceeds about 36%(of the roof design load), the working moment exceeds the plastic moments, which leads to major damage to the structure. This study compares 1) the maximum load according to the purlin spaces, 2) the maximum load by KS, and 3) the maximum load calculated from the test results of the manufacturer.The maximum bearing load of the panels determined by all three methods exceeds the structure failure threshold load of the main structure. This study provides evidence that an unexpected increase in the roof load might cause the whole structure to collapse, due to the failure of the main structural members, before the failure of the roof assemblies. Therefore, information on the structural performance of the sandwich panels is required for the structural design, and the sandwich panels should be considered to be an integral part of the overall structural design.

Effects of plate slenderness on the ultimate strength behaviour of foam supported steel plate elements

  • Pokharel, Narayan;Mahendran, Mahen
    • Structural Engineering and Mechanics
    • /
    • v.21 no.4
    • /
    • pp.407-422
    • /
    • 2005
  • Plate elements in fully profiled sandwich panels are generally subjected to local buckling failure modes and this behaviour is treated in design by using the conventional effective width method for plates with a width to thickness (b/t) ratio less than 100. If the plate elements are very slender (b/t > 1000), the panel failure is governed by wrinkling instead of local buckling and the strength is determined by the flexural wrinkling formula. The plate elements in fully profiled sandwich panels do not fail by wrinkling as their b/t ratio is generally in the range of 100 to 600. For this plate slenderness region, it was found that the current effective width formula overestimates the strength of the fully profiled sandwich panels whereas the wrinkling formula underestimates it. Hence a new effective width design equation has been developed for practical plate slenderness values. However, no guidelines exist to identify the plate slenderness (b/t) limits defining the local buckling, wrinkling and the intermediate regions so that appropriate design rules can be used based on plate slenderness ratios. A research study was therefore conducted using experimental and numerical studies to investigate the effect of plate slenderness ratio on the ultimate strength behaviour of foam supported steel plate elements. This paper presents the details of the study and the results.

Effective Equivalent Finite Element Model for Impact Limiter of Nuclear Spent Fuel Shipping Cask made of Sandwich Composites Panels (사용후 핵연료 수송용기 샌드위치 복합재 충격완충체의 유효등가 유한요소 모델 제시)

  • Kang, Seung-Gu;Im, Jae-Moon;Shin, Kwang-Bok;Choi, Woo-Suk
    • Composites Research
    • /
    • v.28 no.2
    • /
    • pp.58-64
    • /
    • 2015
  • The purpose of this paper is to suggest the effective equivalent finite element model for the impact limiter of a nuclear spent fuel shipping cask made of sandwich composite panels. The sandwich composite panels were composed of a metallic facesheet and a core material made of urethane foam, balsa wood and red wood, respectively. The effective equivalent finite element model for the impact limiter was proposed by comparing the results of low-velocity impact test of sandwich panels. An explicit finite element analysis based on LS-DYNA 3D was done in this study. The results showed that the solid elements were recommended to model the facesheet and core of sandwich panels for impact limiter compared to combination modeling method, in which the layered shell element for facesheet and solid element for core material are used. In particular, the solid element for balsa and red wood core materials should be modeled by the element elimination approach.