• 제목/요약/키워드: sandwich

검색결과 1,509건 처리시간 0.024초

Analytical, numerical and experimental investigation of low velocity impact response of laminated composite sandwich plates using extended high order sandwich panel theory

  • Salami, Sattar Jedari;Dariushi, Soheil
    • Structural Engineering and Mechanics
    • /
    • 제68권3호
    • /
    • pp.325-334
    • /
    • 2018
  • The Nonlinear dynamic response of a sandwich plate subjected to the low velocity impact is theoretically and experimentally investigated. The Hertz law between the impactor and the plate is taken into account. Using the Extended High Order Sandwich Panel Theory (EHSAPT) and the Ritz energy method, the governing equations are derived. The skins follow the Third order shear deformation theory (TSDT) that has hitherto not reported in conventional EHSAPT. Besides, the three dimensional elasticity is used for the core. The nonlinear Von Karman relations for strains of skins and the core are adopted. Time domain solution of such equations is extracted by means of the well-known fourth-order Runge-Kutta method. The effects of core-to-skin thickness ratio, initial velocity of the impactor, the impactor mass and position of the impactor are studied in detail. It is found that these parameters play significant role in the impact force and dynamic response of the sandwich plate. Finally, some low velocity impact tests have been carried out by Drop Hammer Testing Machine. The results are compared with experimental data acquired by impact testing on sandwich plates as well as the results of finite element simulation.

샌드위치 패널의 화재확대 방지시스템 개발을 위한 실험적 연구 (An Experiment Study for Flame Spread Prevention System of Snadwich Panels)

  • 신현준;인기호;유용호
    • 설비공학논문집
    • /
    • 제27권6호
    • /
    • pp.307-312
    • /
    • 2015
  • The sandwich panel is commonly used domestically because it's less costly and easier to handle. But fires have frequently occurred in buildings employing sandwich panels, such as the fires in Eecheon cold storage and in Gwangju Pyungdong industrial zone. Sandwich panels with steel plates on their surface prevent fire water from penetrating to the fire source, which makes it difficult to extinguish a fire in a timely manner. Toxic gas generated from some insulation material leads to serious loss of life and property. This study is intended to develop an extinguishing system for sandwich panels, thereby reducing the fire risk. Fire water and volume were determined in the wake of the study on the structure of a sandwich panel extinguishing system, and improvement and testing of the fire characteristics of the sandwich panel. Based on such study and test, a fire model test was conducted. Consequently, the sandwich panel with extinguishing system was proven to have a reduced fire risk, compared to traditional or fire retardant panels.

딤플형 내부구조 금속 샌드위치 판재의 제작 및 정적 굽힘 실험 (Fabrication of Metallic Sandwich Plates with Inner Dimpled Shell Structure and Static Bending Test)

  • 성대용;정창균;윤석준;이상훈;안동규;양동열
    • 대한기계학회논문집A
    • /
    • 제30권6호
    • /
    • pp.653-661
    • /
    • 2006
  • Metallic sandwich plates with various inner cores have important new features with not only ultra-light material characteristics and load bearing function but also multifunctional characteristics. Because of production possibility on the large scale and a good geometric precision, sandwich plates with inner dimpled shell structure from a single material have advantages as compared with other solid sandwich plates. Inner dimpled shell structures can be fabricated with press or roll forming process, and then bonded with two face sheets by multi-point resistance welding or adhesive bonding. Elasto-plastic bending behavior of sandwich plates have been predicted analytically and measured. The measurements have shown that elastic perfectly plastic approximation can be conveniently employed with less than 10% error in elastic stiffness, collapse load, and energy absorption. The dominant collapse modes are face buckling and bonding failure after yielding. Sandwich plates with inner dimpled shell structure can absorb more energy than other types of sandwich plates during the bending behavior.

Ballistic impact analyses of triangular corrugated plates filled with foam core

  • Panigrahi, S.K.;Das, Kallola
    • Advances in Computational Design
    • /
    • 제1권2호
    • /
    • pp.139-154
    • /
    • 2016
  • The usage of sandwich structure is extensively increasing in lightweight protective structures due to its low density and other useful properties. Sandwich panels made of metal sheets with unfilled cellular cores are found to exhibit lower deflections by comparing to an equivalent monolithic plate of same metal and similar mass per unit density. However, the process of localized impact on solid structures involving plastic deformation, high strain rates, temperature effect, material erosion, etc. does not hold effectively as that of monolithic plate. In present work, the applications of the sandwich plate with corrugated core have been extended to develop optimized lightweight armour using foam as medium of its core by explicit finite element analysis (FEA). The mechanisms of hardened steel projectile penetration of aluminum corrugated sandwich panels filled with foams have been numerically investigated by finite element analysis (FEA). A comparative study is done for the triangular corrugated sandwich plate filled with polymeric foam and metallic foam with different densities in order to achieve the optimum penetration resistance to ballistic impact. Corrugated sandwich plates filled with metallic foams are found to be superior when compared to the polymeric one. The optimized results are then compared with that of equivalent solid and unfilled cores structure to observe the effectiveness of foam-filled corrugated sandwich plate which provides an effective resistance to ballistic response. The novel structure can be the alternative to solid aluminum plate in the applications of light weight protection system.

PLASTIC STRAIN RATIOS AND PLANAR ANIOSOTROPY OF AA5182/POLYPROPYLENE/AA5182 SANDWICH SHEETS

  • KIM K. J.
    • International Journal of Automotive Technology
    • /
    • 제6권3호
    • /
    • pp.259-268
    • /
    • 2005
  • In order to analyze the sheet drawability, the measurement of the plastic strain ratio was carried out for the 5182 aluminum alloy sheets in which were cold rolled without lubrication and subsequent recrystallization annealing. The average plastic strain ratio of the 5182 aluminum sheets was 1.50. It was considered that the higher plastic strain ratio was resulted from the ND//<111> component evolved during rolling and maintained during annealing. The AA5182/polypropylene/AA5182 (AA/PP/AA) sandwich sheets of the 5182 aluminum alloy skin sheet and the polypropylene core sheet with high formability have been developed for application for automotive body panels in future light weight vehicles with significant weight reduction. The AA/PP/AA sandwich sheets were fabricated by the adhesion of the core sheet and the upper and lower skin sheets. The AA/PP/AA sandwich sheet had high plastic strain ratio (1.58), however, the planar anisotropy of the sandwich sheet was little changed after fabrication. The optimum combination of directionality of the upper and lower skin sheets having high plastic strain ratio and low planar anisotropy was calculated theoretically and an advanced process for producing the sandwich sheets with high plastic strain ratio was proposed. The developed sandwich sheets have a high average plastic strain ratio of 1.55 and a low planar anisotropy of 0.17, which was improved more by 3.2 times than that of 5182 aluminum single sheet.

Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate using energy principle

  • Medani, Mohammed;Benahmed, Abdelillah;Zidour, Mohamed;Heireche, Houari;Tounsi, Abdelouahed;Bousahla, Abdelmoumen Anis;Tounsi, Abdeldjebbar;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • 제32권5호
    • /
    • pp.595-610
    • /
    • 2019
  • This paper deals with the static and dynamic behavior of Functionally Graded Carbon Nanotubes (FG-CNT)-reinforced porous sandwich (PMPV) polymer plate. The model of nanocomposite plate is investigated within the first order shear deformation theory (FSDT). Two types of porous sandwich plates are supposed (sandwich with face sheets reinforced / homogeneous core and sandwich with homogeneous face sheets / reinforced core). Functionally graded Carbon Nanotubes (FG-CNT) and uniformly Carbon Nanotubes (UD-CNT) distributions of face sheets or core porous plates with uniaxially aligned single-walled carbon nanotubes are considered. The governing equations are derived by using Hamilton's principle. The solution for bending and vibration of such type's porous plates are obtained. The detailed mathematical derivations are provided and the solutions are compared to some cases in the literature. The effect of the several parameters of reinforced sandwich porous plates such as aspect ratios, volume fraction, types of reinforcement, number of modes and thickness of plate on the bending and vibration analyses are studied and discussed. On the question of porosity, this study found that there is a great influence of their variation on the static and vibration of porous sandwich plate.

Buckling and free vibration analysis of multi-directional functionally graded sandwich plates

  • Ali, Alnujaie;Atteshamuddin S., Sayyad;Lazreg, Hadji;Abdelouahed, Tounsi
    • Structural Engineering and Mechanics
    • /
    • 제84권6호
    • /
    • pp.813-822
    • /
    • 2022
  • In this article, the buckling and free vibration of multi-directional FGM sandwich plates are investigated. The material properties of FGM sandwich plates are assumed to be varying continuously in the in the longitudinal, transverse and thickness directions. The material properties are evaluated based on Voigt's micro-mechanical model considering power law distribution method with arbitrary power index. Equations of motion for the buckling and vibration analysis of multi-directional FGM sandwich plate are obtained based on refined shear deformation theory. Analytical solution for simply supported multidirectional FGM sandwich plate is carried out using Navier's solution technique. The FGM sandwich plate considered in this work has a homogeneous ceramic core and two functionally graded face sheets. Influence of volume fraction index in the longitudinal, transverse and thickness direction, layer thickness, and geometrical parameter over natural frequency and critical buckling load of multi-directional FGM sandwich plate is investigated. The finding shows a multi-directional functionally graded structures perform better compared to uni-directional gradation. Hence, critical grading parameters have been identified which will guide researchers in selecting fabrication routes for improving the performance of such structures.

알루미늄5182/폴리프로필렌/알루미늄5182 샌드위치 판재의 톱니모양 거동 (Serration Behavior of AA5l82/Polypropylene/AA5182 Sandwich Sheets)

  • 김기주;신광선
    • 한국자동차공학회논문집
    • /
    • 제12권3호
    • /
    • pp.192-203
    • /
    • 2004
  • The AA5182/polypropylene/AA5182 (AA/PP/AA) sandwich sheets have been developed for the application for automotive body panels in the future light weight vehicles with significant weight reduction. It has been reported that the 5182 aluminum sheet shows Luders band because of dissolved Mg atoms that causes fabrication process problem, especially surface roughness. The examination of serration behavior has been made after the tensile deformation of the AA/PP/AA sandwich sheets as well as that of the 5182 aluminum skin at room and elevated temperatures. All sandwich sheets and the 5182 aluminum skin showed serration phenomena on their flow curves. However, the magnitude of the serration was significantly diminished in the sandwich sheet with the high volume fraction of the polypropylene core. According to the results of the surface roughness analysis after the tensile test, the sandwich sheet evidently showed lower Luders band depth than the 5182 aluminum skin. Strain rate sensitivity, m-value, of the 5182 aluminum skin was -0.006. By attaching this skin with polypropylene core which has relatively large positive value, 0.050, m-value of the sandwich sheets was changed to the positive value. The serration reduction of the sandwich sheets was quantitatively investigated in the point of the effect on the polypropylene core thickness variation, that on the strain rate sensitivity. It was found that the serration reduction degree from the experimental results of the sandwich sheet was higher than that from the calculated values by the rule of mixture based on volume fraction of the skins and the core.

측면하중을 받는 트러스형 내부구조를 가지는 샌드위치 튜브의 특성 (The Characteristics of a Sandwich Tube with a Truss Core under Lateral Loading)

  • 정창균;성대용;양동열;문경제;안동규
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.268-271
    • /
    • 2007
  • A sandwich tube is a structured material that has two inner and outer circular tubes and light material between them. In this paper, a sandwich tube with a pyramidal truss core is introduced. Fabrication method and example made by brazing are shown. The behavior of the sandwich tube under lateral loading is predicted by analytical and numerical method. Comparative study between the sandwich and the monocoque tube is performed at a point of view such as strength and weight saving. As a result, proposed tube is appropriate for application to lightweight structural material

  • PDF

Mechanical behaviour of a syntactic foam/glass fibre composite sandwich: experimental results

  • Papa, Enrico;Corigliano, Alberto;Rizzi, Egidio
    • Structural Engineering and Mechanics
    • /
    • 제12권2호
    • /
    • pp.169-188
    • /
    • 2001
  • This note presents the main results of an experimental investigation into the mechanical behaviour of a composite sandwich conceived as a lightweight material for naval engineering applications. The sandwich structure is formed by a three-dimensional glass fibre/polymer matrix fabric with transverse piles interconnecting the skins; the core is filled with a polymer matrix/glass microspheres syntactic foam; additional Glass Fibre Reinforced Plastics extra-skins are laminated on the external facings of the filled fabric. The main features of the experimental tests on syntactic foam, skins and sandwich panels are presented and discussed, with focus on both in-plane and out-of-plane responses. This work is part of a broader research investigation aimed at a complete characterisation, both experimental and numerical, of the complex mechanical behaviour of this composite sandwich.