• Title/Summary/Keyword: sanding rate

Search Result 5, Processing Time 0.018 seconds

Finishing of Interior Fabric Using Soluble Micro-fiber and low melting Yarn (용출형 극세사와 저온 융착사를 이용한 인테리어 직물의 가공)

  • Ahn, Young-Moo
    • Journal of Fashion Business
    • /
    • v.13 no.2
    • /
    • pp.78-86
    • /
    • 2009
  • When scouring and contraction finishing at $90^{\circ}C$ using Relaxer or Rotary Washer contraction and weight loss ratio in warp and weft directions were excellent. Also surface state of fabric after drying or sanding treatment was excellent without crease. Low melting polyester fabric showed a complete melting bond by heat setting(P/S) at above $160^{\circ}C$. The alkali hydrolysis reaction of polyester showed the breakpoint in the weight loss behavior test, polyester yarn showed a breakpoint ranging from 25% to 28%. This is due to the difference of the hydrolysis rate between regular polyester and soluble polyester. Initially the soluble polyester was eluted and micro-fibrillized 5 times faster than a regular polyester. At a later time, a regular polyester was reduced weight to impart a proper flexibility and drape property to the fabric. As a result of surface sanding finishing, the surface of interior fabric showed a surface state most stabilized when using Mesh No. 220 in mono 0.2d after elution finishing. When the rotation direction of sanding roller was pro-, pro-, pro-, and retro-direction, a directional effect of tuft was not shown, a writing effect as suede was exhibited and a surface state was even. Sublimation fastness was 3-4 class for polyester and 2-4 class for nylon. Light fastness 3-4 class after lapse of 100 hours and 2-4 class after lapse of 160 hours. Abrasion fastness was 3-4 class on wet and 4-5 class on dry Laundry fastness was 2-4 class. As such, the abrasion fastness is slightly reduced upon wetting and the use thereof for interior is excellent, whereas laundry fastness is slightly lowered.

Atmospheric corrosion rate and corrosivity categories of industrial metals in Asan area (아산지역에서 산업재료의 대기부식속도 측정)

  • Kim, Jin-Hyung;Lee, Jong-Kwon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.10
    • /
    • pp.4653-4657
    • /
    • 2013
  • The atmospheric corrosion rate were measured in Asan area for four years according to ISO 9224. The tested metals chosen as the most frequently used in industry, aluminum were copper, carbon steel, weathgering steel, and galvanized steel. The assessed corrosivity categories was 3 in average. The corrosivity categories of asan area was higher than typical rural area and even urban area, whereas it slightly lower than marine area. The results were discussed, specially as the regional climatic characteristics.

A Study on Oxygen Consumption during Occupational Activities Performance of Adult Hemiplegia (성인 편마비 환자의 작업수행 중 산소소모량에 대한 연구)

  • Oh, Kyung-Ah;Yoon, Seoung-Ic;Min, Kyung-Ok;Kim, Yoon-Shin;Oh, Duck-Won;Chon, Seung-Chul
    • Journal of Korean Physical Therapy Science
    • /
    • v.15 no.1
    • /
    • pp.21-28
    • /
    • 2008
  • The purposes of this study are to quantify energy expenditure by measuring oxygen consumption while performing occupational therapy activities most commonly used for adult hemiplegia patients, to recommend a optimal dosage of exercise by comparing energy expenditure according to the recovery stage, and to suggest a precaution in the treatment of patients with cardiac disorders. According to Brunnstrom recovery stages in hand function, subjects were allocated to group I(3rd and 4th Brunnstrom recovery stages) and group II(5th and 6th Brunnstrom recovery stages). Outcome measures included oxygen consumption, energy expenditure rate, and heart rate during each activity and in recovery period after the activity. Occupational activities including sanding activity, putty activity, and skateboard activity were carried out for all patients. In sanding and putty activities, there were significant differences of oxygen consumption and energy expenditure during the activity between groupⅠandⅡ(p<0.05), but there were not significant differences of oxygen consumption, energy expenditure and heart rate in the recovery period(p>0.05). In skateboard activity, there were no significant differences in oxygen consumption, energy expenditure and heart rates between the two groups during the activity and in the recovery period(p>0.05). The findings indicates that cardiovascular demands for basic activities usually peformed for a treatment may be depended on the physical recovery of patients with hemiplegia. Therefore, therapeutic activities for patients should be selected with the great care.

  • PDF

The effect of well inclination angle on sand production using FDM-FEM modelling; A case study: One of the oil fields in Iran

  • Nemat Nemati;Kamran Goshtasbi;Kaveh Ahangari;Reza Shirinabadi
    • Geomechanics and Engineering
    • /
    • v.38 no.2
    • /
    • pp.107-123
    • /
    • 2024
  • The drilling angle of the well is an important factor that can affect the sand production process and make its destructive effects more severe or weaker. This study investigated the effect of different well angles on sand production for the Asmari Formation, located in one of the oil fields southwest of Iran. For this purpose, a finite difference model was developed for three types of vertical (90°), inclined (45°), and horizontal (0°) wells with casing and perforations in the direction of minimum and maximum horizontal stresses, then coupled with fluid flow. Here, finite element meshing was used, because the geometry of the model is so complex and the implementation of finite difference meshes is impossible or very difficult for such models. Using a combined FDM-FEM model with fluid flow, the sand production process in three different modes with different flow rates for the Asmari sandstone was investigated in this study. The results of numerical models show that the intensity of sand production is directly related to the in-situ stress state of the oil field and well drilling angle. Since the stress regime in the studied oil field is normal, the highest amount of produced sand was in inclined wells (especially wells drilled in the direction of minimum horizontal stress) and the lowest amount of sand production was related to vertical wellbore. Also, the Initiation time of sand production in inclined wells was much shorter than in other wellbores.

Influence of Manufacturing Conditions for the Life Time of the Boron-Doped Diamond Electrode in Wastewater Treatment (폐수처리용 붕소 도핑 다이아몬드 전극의 수명에 미치는 제조공정 변수의 영향)

  • Choi, Yong-Sun;Lee, Young-Ki;Kim, Jung-Yuel;Kim, Kyeong-Min;Lee, You-Kee
    • Korean Journal of Materials Research
    • /
    • v.27 no.3
    • /
    • pp.137-143
    • /
    • 2017
  • Boron-doped diamond (BDD) electrode has an extremely wide potential window in aqueous and non-aqueous electrolytes, very low and stable background current and high resistance to surface fouling due to weak adsorption. These features endow the BDD electrode with potentially wide electrochemical applications, in such areas as wastewater treatment, electrosynthesis and electrochemical sensors. In this study, the characteristics of the BDD electrode were examined by scanning electron microscopy (SEM) and evaluated by accelerated life test. The effects of manufacturing conditions on the BDD electrode were determined and remedies for negative effects were noted in order to improve the electrode lifetime in wastewater treatment. The lifetime of the BDD electrode was influenced by manufacturing conditions, such as surface roughness, seeding method and rate of introduction of gases into the reaction chamber. The results of this study showed that BDD electrodes manufactured using sanding media of different sizes resulted in the most effective electrode lifetime when the particle size of alumina used was from $75{\sim}106{\mu}m$ (#150). Ultrasonic treatment was found to be more effective than polishing treatment in the test of seeding processes. In addition to this, BDD electrodes manufactured by introducing gases at different rates resulted in the most effective electrode lifetime when the introduced gas had a composition of hydrogen gas 94.5 vol.% carbon source gas 1.6 vol.% and boron source gas 3.9 vol.%.