• Title/Summary/Keyword: sand slope

Search Result 240, Processing Time 0.026 seconds

Characteristics of Vegetation Type and Zonation on Daegwang Coastal Dune in Imja-do, Korea (임자도 대광사구의 식생유형과 대상분포 특징)

  • Kim, Yoon-Mi;Lee, Jung-Hyo
    • Korean Journal of Environment and Ecology
    • /
    • v.26 no.4
    • /
    • pp.576-587
    • /
    • 2012
  • As being actual physiognomical vegetation on Daegwang sand dune in Imjado, the widest area is occupied by Pinus thunbergii community planted as windbreak forest whereas those communities such as Robinia pseudoacacia community, Elymus mollis community, Imperata cylindrica var. koenigii - Elymus mollis community, Carex kobomugi community, Ischaemum antephoroides community, Imperata cylindrica var. koenigii community, Phragmites communis community, Imperata cylindrica var. koenigii - Calamagrostis epigeios community occupy as band shape or patch. According to the result of the data collected and analyzed based on phytosociological method regarding 74 plots of survey area, the species composition of Daegwang sand dune vegetation is classified total 10 vegetation units comprises 7 communities and 5 groups. The 7 communities are classified into Pinus thunbergii community, Robinia pseudoacacia community, Rosa rugosa var. rugosa community, Ischaemum antephoroides community, Carex kobomugi community, Calamagrostis epigeios community, and the sub-units of Pinus thunbergii communities are classified into 3 groups of Pteridium aquilinum var. latiusculum group, Elymus mollis group, Pinus thunbergii topical group and the sub-units of Calamagrostis epigeios communities are classified into 2 groups of Phragmites communis group, Calamagrostis epigeios tipical group. The zonation of vegetation from coastal line indicated with the order of Elymus mollis - Carex kobomugi, Carex pumila, Lathyrus japonicus - Calystegia soldanella - Vitex rotundifolia, Lathyrus japonicus, Ischaemum antephoroides - Rosa rugosa var. rugosa. According to the analysis result of longitudinal section, it was found to be those types with wide width herbaceous vegetation of foredune, smooth slope of foredune, lots of dune ridges with no structure were less vulnerable to erosion of sand dune and advantageous to its recovery.

An Experimental study to estimate physical properties of porous media by a permittivity method (유전율법에 따른 다공질 매질의 특성 파악을 위한 실험적 연구)

  • 김만일;니시가끼마코토
    • The Journal of Engineering Geology
    • /
    • v.13 no.4
    • /
    • pp.405-418
    • /
    • 2003
  • Measurements of volumetric water content and saturation of porous media are very important factors in understanding the physical characteristics of soil, groundwater recharge by rainfall, pollutant movement, and slope failure. To measure such physical parameters, a permittivity method using electromagnetic wave is applied and use is made of the special permittivity response of understand to water and ethanol. In particular, the estimation is required because permittivity is influenced by the nature of the underground environment. In this study, we carried out experiments on the relative dependency of soil density, temperature and salinity of standard sand and granitic weathered soil using FDR-V system (Frequency domain reflectometry with vector network analyzer) within a frequency range of 1 - 18 GHz. The results of the study showed that the dielectric constants of standard sand and granitic weathered soil increased with increased volumetric water content of soil. However, the dependency of soil density was found to be a little low. Changes of dielectric constant with temperature appeared definitely in the real part of 1 GHz. That is, the dielectric constant of real part at 1 GHz of water and standard sand increased with the rise of temperature. However, ethanol showed decreased tendency. The study also showed that dielectric constant increased with increase in salinity at imaginary part of 1 GHz. It could be concluded from this study FDR-V system can adequately measure the physical properties of soil and the degree of salinity concentration of porous media within 1 GHz frequency range using dielectric constant.

Experimental Study on the Hysteresis of Suction Stress in Unsaturated Sand (불포화 모래의 흡입응력 이력현상에 대한 실험적 연구)

  • Song, Young-Suk;Choi, Jin-Su;Kim, Gyo-Won
    • The Journal of Engineering Geology
    • /
    • v.22 no.2
    • /
    • pp.145-155
    • /
    • 2012
  • The matric suction and volumetric water content of Jumunin standard sand with a relative density of 60% were measured using an Automated Soil-Water Characteristic Curve (SWCC) apparatus during both drying and wetting processes. The test time for the drying process was longer than that for the wetting process, because the flow of water is likely to be protected by air trapped in voids within the soils during the drying process. Based on the matric suction and volumetric water content, the SWCC was estimated using the model proposed by van Genuchten (1980). For the drying process, the unsaturated fitting parameters ${\alpha}$, n, and m were 0.399, 8.586, and 0.884, respectively; for the wetting process, the values were 0.548, 5.625, and 8.220, respectively. The hysteresis phenomenon occurred in the SWCCs, which means the SWCC of the drying process is not matched with the SWCC of the wetting process. Using these unsaturated parameters, we estimated the Suction Stress Characteristic Curve (SSCC), based on the relationship between suction stress and the effective degree of saturation. The suction stress showed a rapid decrease when the matric suction exceeds the Air Entry Value (AEV). Therefore, the effective stress of unsaturated soils is different from that of saturated soils when the matric suction exceeds the AEV. The suction stress of the drying process exceeds that of the wetting process for a given effective degree of saturation. The hysteresis phenomenon was also recognized in SSCCs. The hysteresis phenomenon of SSCCs arises from that of SWCCs, which is induced by the ink bottle effect and the contact angle effect. In the case of a sandy slope, the suction stress is positive and acts to enhance the slope stability as the water infiltrates the ground, but is negative when the suction stress exceeds the AEV. The results obtained for the wetting process should be applied in analyses of slope stability, because the process of water infiltration into ground is similar to the wetting process.

Detailed Bathymetry and Seabed Characteristics of Wangdol-cho, Hupo Bank in the East Sea (동해 후포퇴 왕돌초 주변의 정밀해저지형 및 해저면 특성 분석)

  • Kim, Chang Hwan;Park, Chan Hong
    • Economic and Environmental Geology
    • /
    • v.47 no.5
    • /
    • pp.533-540
    • /
    • 2014
  • The Wangdol-cho area, in the Hupo Bank, plays a very important role in main fishing grounds, leisure tourism and marine environmental researches of the East Sea. We analyzed the detailed bathymetry and classified the seabed characteristics of the Wangdol-cho area, based on seafloor backscattering images and sediment grain size. The Hupo Bank is developed in parallel with the eastern coastal line of Korean peninsula, and the shallowest area (Wangdol-cho) of the Hupo Bank is located along the eastern part of Hupo Port. The Wangdol-cho comprises three summits; north summit, middle summit, and south summit. The middle summit area among the three summits has the most shallow water depth with minimum about 6 m. The north summit shows about 8 m minimum depth and the south summit about 9 m. The bathymetry data around three summits represent undulating seabeds with many scattered underwater reefs and shallow water depth. The area between the underwater reefs, the flat seafloor in the northeastern part of the survey site, and the western steep slope area have relatively coarse sediments such as sandy gravel and gravelly sand. The bathymetry in the western side of the Wangdol-cho shows steep slope seabed, extending to the Hupo Basin. Fine sediments including mud and silty sand occur in the Hupo Basin area of the survey site. The submarine detailed topography and the analysis of the seafloor characteristics of the survey area are expected to contribute to management for marine environmental researches and sustainable use of ecosystems in the Wangdol-cho.

Engineering Characteristics of Soil Slopes Dependent on Geology - Hwangryeong Mt. District, Busan - (지질에 따른 토층사면의 토질공학적 특성 -부산 황령산지역-)

  • Kim Kyeong-Su;Lee Moon-Se;Cho Yong-Chan;Chae Byung-Gon;Lee Choon-Oh
    • The Journal of Engineering Geology
    • /
    • v.14 no.4 s.41
    • /
    • pp.487-498
    • /
    • 2004
  • There is an increasing trend of construction works in mountainous areas by the urban development in Busan that is mainly composed of mountains. The study area, Hwangryeong Mt., is one of developing sites in the urban area, too. Landslides and cut-slope failures that occur large damages of human beings and the properties are influenced by soil characteristics as well as rock properties. This study analyzed geotechnical characteristics of soil dependent on geology at Hwangryeong Mt. where a large slope failure had been occurred in 1999. Geology of the study area is composed of the Cretaceous sedimentary rocks and volcanic rocks. Soil layer of the slopes can be grouped into sand mixed with clay and silt. The cohesion is plotted between $0.001\;and\;0.066kg/cm^2$. The friction angles are distributed in the ranges between $32^{\circ}\;and\;39^{\circ}$, meaning soil bearing a high friction angle. The permeability coefficients are plotted between $2.34\times10^{-4}cm/sec\;and\;2.58\times10^{-2}cm/sec$, indicating fine sand and loose silt with a medium grade of permeability. The sedimentary rocks area shows relatively higher permeability coefficients than those volcanic rocks area.

Roadside Landslide and Ditch Erosion in Mountain Forest Road (산악지림도(山岳地林道)의 노견(路肩) 사면붕괴(斜面崩壞)와 측구침식(側溝浸蝕)에 관(關)한 연구(硏究))

  • Ma, Sang Kyu
    • Journal of Korean Society of Forest Science
    • /
    • v.76 no.2
    • /
    • pp.161-168
    • /
    • 1987
  • Forest road (10 Km) constructed for the demonstrational purpose by Forest Work Training Center (F.T.C.) in 1984 was partly damaged through the roadside landside and ditch erosion by the typhoon in 1986. The causes were investigated to apply for protecting against the damage of mountain forest road. The damaging length caused by roadside landside is around 3% out of total length of 10 Km forest road, and mostly coming from the curve road filled up more than 10 m slope length on the concave mountain slope, partly from the foot of fillslope along the ever-following valley and from the both side of fillslope under the outlet of culvert with ever-flowing water. In case of ditch erosion, the big damage at V-type ditch is coming from the overflow of valley water flowing down along the inside slope. Other problem is also showing in the steepness of longitudial gradient, which is felt as a problem in road to be constructed under more than 10 persent of gradient. Other cause of ditch erosion is coming from the bury of sand basin (water collecting wall) by the debris in small diameter culvert zone, namely less than 400mm, in diameter and by the soil mass slumped down from steep wall slope. From above results the causes of F.T.C. model road damage is showing to come from no-following the general guide or little experience to protect against the forest road damage. When improved above mentioned mistakes, F.T.C. Method of mountain forest road type could be developed as a model of Mountain forest road.

  • PDF

Soil Characteristics according to the Geological Condition of Natural Slopes in Busan Area (부산지역 자연사면의 지질조건에 따른 토질특성)

  • Kim, Kyeong-Su
    • The Journal of Engineering Geology
    • /
    • v.17 no.3
    • /
    • pp.471-481
    • /
    • 2007
  • The Landslide in natural slope is occurred mostly by a heavy rain of the summer. This landslide is influenced in soil property of the surface than the rock mass. Soils in natural slope are created by weathering phenomena of the bedrock. These soils differed to the geological conditions such as sedimentary rock, metamorphic rock and volcanic rock. Therefore, estimation of landslide in natural slope is the most important analysis of the bedrock distributions and soil characteristics. This study analyzed the soil property to the natural slopes of Busan area where is distributed to volcanic rock, granite and sedimentary rock. Soil sample conducted various soil tests for estimate the soil physical property and soil engineering characteristics, and analysis of the correlation of geological conditions. In the experiment result, soils were mainly classified by a clayey sand. It is also established that $1.07{\sim}1.99kg/cm^3$ for wet density, $28.2{\sim}39.6^{\circ}$ for angle of shearing resistance, and $8.10{\times}10^{-5}{\sim}8.38{\times}10^{-2}cm/sec$ for coefficient of permeability. From the physical parameter, the soils are estimated to the permeable ground with good shear strength, and soil properties are showed a differential tendency for each geological condition.

Characteristics of Sewage Flow in Sewer Pipes Deposited with Cohesive and Non-cohesive Solids (점착성 및 비점착성 고형물이 퇴적된 관로 내 하수흐름의 특성 조사)

  • Lee, Taehoon;Kang, Byongjun;Park, Kyoohong
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.7
    • /
    • pp.153-159
    • /
    • 2020
  • In order to find out the condition of flow in sewer pipes, this study investigated the characteristics of tractive force of sewage flow estimated using actual measured values of water level, velocity, and flowrate in sewers located at uppermost portion in a treatment area during dry weather periods. When the scene of sewage flow was taken by CCTV after cohesive and non-cohesive solids (tofu and sand) were put on the sewer invert, it was found that the solids could be flushed without significant interruption. In sewer with slope of 0.00319, the frequency exceeding the minimum tractive force of sewage during a weekday was zero, while it was 10 per day with slope of 0.00603. During the week of the field observation, the event to exceed the minimum tractive force occurred once, suggesting that sewer odor would potentially increase. Maximum tractive force in sewer with steep slope was 2.9-3.1 N/㎡, but with gentle slope it decreased to 1.6-1.7N/㎡. It was also observed that the interval of time maintained below the criterion of minimum tractive force increased, during weekends compared to weekdays and for the sewage including non-cohesive particles which could enter combined sewers during a storm period. This study found that the sewer sediments formed by direct feces input into sewers, through sewer pipes which were designed meeting the standard sewer design criteria, could be flushed without staying as deposited solids state for a long time.

Effect of Soil Reinforcement on Shear Strength by Pennisetum alopecuroides and Miscanthus sinensis Roots on Loamy Sand at River Banks (하천제방 양질사토에 대한 수크령과 억새 뿌리의 토양전단강도 보강효과)

  • Dang, Ji-Hee;Cho, Yong-Hyeon;Lee, Chun-Seok
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.20 no.2
    • /
    • pp.79-91
    • /
    • 2017
  • This study was conducted to find out the physical properties and soil shearing strength reinforcement effect of herbaceous plants for the slope revegetation works. Two native plants(Pennisetum alopecuroides and Miscanthus sinensis) were used for this experiment, because they have excellent seed germination rates without preconditioning, and grow naturally around rivers. To identify the physical properties, the partial dry weight of plants were investigated. To identify the soil shearing strength reinforcement effect, the respective soil shearing strengths of the control soils, Pennisetum alopecuroides, Miscanthus sinensis samples were measured. Also, we did a correlation analysis to examine the relation of shearing strength to plant features. The results are summarized as follows: 1. The average dry weight of Pennisetum alopecuroides samples consists of 52.36% above ground and 47.64% at root. And in dry weight, 78.24% of it's root distributes within 10 cm in soil depth. Meanwhile the average dry weight of Miscanthus sinensis samples consists of 52.91% above ground and 47.09% at root. And in dry weight, 82.95% of it's root distributes within 10 cm in soil depth. 2. The results of correlation analysis showed that for both Pennisetum alopecuroides and Miscanthus sinensis, it could not be said that there was any correlation between shearing strength and plant characteristics, and statistically they were not meaningful. 3. In the shearing strength test with control soils, Pennisetum alopecuroides, Miscanthus sinensis as subjects, the differences in shearing strength measurement results were modest, and the order was shown as control soils < Pennisetum alopecuroides < Miscanthus sinensis, so the soil shearing strength reinforcement effect by the Pennisetum alopecuroides and the Miscanthus sinensis on loamy sand at river banks surface was confirmed.

Development of Indicators for Dredging Evaluation and Form on Erosion Control Dam Using the Delphi Technique and AHP Analysis (델파이 기법과 AHP를 이용한 중력식 사방댐 준설 평가지표 및 조사야장 개발)

  • Seo, Junpyo;Lee, Changwoo;Woo, Choongshik;Lee, Heonho
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.17 no.6
    • /
    • pp.1-15
    • /
    • 2014
  • A dredging on erosion control dam has been enforced without evaluation the factors that affect the dredging. In addition, there is the negative effect much more than positive effect by dredging on erosion control dam. Therefore, this study was carried out to develop evaluation indicators and to suggest fieldbook in order to determine whether sand deposits at erosion control dam should be dredged up or not. The most important six evaluation indicators that can decide to dredge up at erosion control dam were obtained from three round delphi technique and were selected in the following order: the current sand deposit ratio(0.339), existence of cultivated land and house downstream(0.276), the slope of streambed(0.162), the amount of movable soil and gravel(0.118), the history of any disasters(0.063), the basin area(0.043). The weighted score for each evaluation indicator were acquired from AHP analysis with respect to the degree of importance and then the modified weighted score for actual measurements were classified as three categories: large(2.53), medium(1.60) and small(1.01). Based on delphi technique, erosion control dam dredging evaluation fieldbook introduced the four evaluation indicators out of the total six evaluation indicators and two low effected evaluation indicators were excluded. This results showed that the values for reliability analysis and consistency ratio were acceptable.