• Title/Summary/Keyword: sand mat

Search Result 74, Processing Time 0.022 seconds

Evaluation of Discharge Capacity of Upper Sand Deposit at the Nakdong River Estuary (낙동강 하구 상부퇴적사질토의 통수능 평가)

  • Jeong, Jin-Yeong;Kim, Tae-Hyung;Im, Eun-Sang;Hwang, Woong-Ki;Kim, Gyu-Jong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.2
    • /
    • pp.109-119
    • /
    • 2017
  • In this research, it was investigated that whether the upper sand deposited in Nakdong River Estuary Delta region has the role of horizontal drains like sand mat. The results from tests for particle size distribution and permeability of the upper sand deposit did not meet completely the criteria for the horizontal drain material. Thus, numerical analysis has been conducted additionally. Numerical analyses of consolidation of soft soils with upper layer of sand deposit are conducted in both the sand mat with a thickness of 1m and the upper sand deposit with 1, 2, 3, and 4 m of thickness and their results are compared. As the results of numerical analysis, the upper sand deposit with a thickness of 2m or more may play the role of horizontal drains similar to a sand mat. If a PVD is installed, the ability of upper sand deposit as horizontal drains is increased. Form this study, it was concluded that the upper sand deposited in Nakdong River Estuary Delta has the role of horizontal drain.

Analysis of the effect factors on behavior of the surface reinforced very soft ground (표층처리된 초연약지반 거동에 대한 영향인자 분석)

  • You, Seung-Kyong;Lee, Jong-Sun;Yang, Kee-Sok;Cho, Sam-Deok;Ham, Tae-Gew;Choi, Hang-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.475-483
    • /
    • 2008
  • It is necessary to develop a national design method for surface reinforcement of very soft ground because most current design works rely on crude empirical correlations. In this paper, the mechanical behavior of very soft ground that is surficially reinforced was investigated with the aid of a sents of numerical analysis. Several material properties of each dredged soft ground, reinforcement and backfill sand mat have been exercised the numerical analysis in order to compare the result of numerical analysis with those of the laboratory model test. Through the matching process between the numerical and experimental result, it is possible to find the appropriate material properties of the dredged soft ground, reinforcements and backfill sand mat. These verified material properties permit to show the effect of the stiffness of reinforcement and the thickness of sand mat on the overall deformation.

  • PDF

Model Test and Deformation Analysis of the Improved Soft Foundation( Il) (개량연약지반의 모형실험과 변형해석 (II))

  • 이진수;이문수
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.4
    • /
    • pp.73-86
    • /
    • 1994
  • Ths paper was aimed to investigate the effect of reinforcement for the deformation characteristics of clayey foundation. Among numerous improvement method of foundation, only geotextil-reinforced foundation and foundation with both geotextile and sand mat which were 2-dimensional model clayey foundations were selected for load test in order to obtain fundamental results in analizing the behavior of the foundation with geotextile. To scrutinize the behavior characteristics and effect of reinforcement, the model foundations were constructed with various conditions on the location of layout of geotextile, the number of layouts and the depth of sand mat As for the technique of the numerical analysis elasto-plastic constitutive model for clayey soil, beam element for geotextile and elastic model for sand were respectively employed. Interface element was introduced for the block between materials with different rigidity. Observed values and numerical results were compared with satisfactory correspondence, which proved that the numercial technique developed in this paper was available.

  • PDF

Influence of trees and associated variables on soil organic carbon: a review

  • Devi, Angom Sarjubala
    • Journal of Ecology and Environment
    • /
    • v.45 no.1
    • /
    • pp.40-53
    • /
    • 2021
  • The level of soil organic carbon (SOC) fluctuates in different types of forest stands: this variation can be attributed to differences in tree species, and the variables associated with soil, climate, and topographical features. The present review evaluates the level of SOC in different types of forest stands to determine the factors responsible for the observed variation. Mixed stands have the highest amount of SOC, while coniferous (both deciduous-coniferous and evergreen-coniferous) stands have greater SOC concentrations than deciduous (broadleaved) and evergreen (broadleaved) tree stands. There was a significant negative correlation between SOC and mean annual temperature (MAT) and sand composition, in all types of forest stands. In contrast, the silt fraction has a positive correlation with SOC, in all types of tree stands. Variation in SOC under different types of forest stands in different landscapes can be due to differences in MAT, and the sand and silt fraction of soil apart from the type of forests.

Behaviors of Artificial Reef Reinforced with Settlement Reduction Reinforcement (침하 저감용 보강재로 보강된 인공어초 설치 지반의 거동 특성)

  • Yun, Daeho;Kim, Yuntae
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.1
    • /
    • pp.1-9
    • /
    • 2019
  • This study investigated settlement and scouring characteristics of artificial reef reinforced with various reinforcement types to reduce settlement and scouring. Three reinforcement types were prepared: geogrid, geogrid-bamboo mat (GBM) and seaweed-pile mat (SPM). Various laboratory tests such as bearing capacity test, large size settlement test, two-dimensional flow scour test were performed according to different soil types (sand, silt, clay). Laboratory test results indicated that bearing capacity of seabed with a reinforced artificial reef increased and its settlement and scour depth reduced for all reinforcement types. Especially, reinforcement effect tends to be greater in clay soft ground rather than sand and silt grounds.

Deformation and Stress Distribution on Multi-Layered Foundation with Different Rigidity (강성(剛性)이 다른 다층토(多層土) 지반(地盤)의 변형(變形) 및 응력전달(應力傳達))

  • Park, Byong Kee;Chang, Yong Chai;Park, Jong Cheon;Park, Seon Bae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.2
    • /
    • pp.205-215
    • /
    • 1992
  • Load tests for fourteen small-scale foundation models combined with geotextile, sand mat and rigid mat were conducted to study the effect of geotextile(G/T), sand mat(S/M), and foundation types on deformation of foundation soils. In addition, the experimental results were compared with those obtained from numerical analysis using a software program. The main conclusions were summarized as follows: 1. The restraint effect on G/T is more outstanding on the lateral displacement than on the vertical one. 2. The single use of S/M has better effect on the restraint of vertical displacement than lateral one. 3. The use of both S/M and G/T is required for the restraint of lateral and vertical displacement. 4. Multi-layered foundation with large rigidity shows similar tendency to that of foundation reinforced with S/M and G/T.

  • PDF

The Usage of Copper Slag as The Drainage Materials (동 수매 슬래그의 배수용 재료로써의 이용)

  • 민덕기;황광모;이경준;김현도
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.453-458
    • /
    • 2001
  • Copper slag is produced about 700,000 tons annually though copper refining process in Korea. In the paper, a laboratory investigation was carried out to estimate the geotechnical properties of copper slag and examine the feasibility of using the copper slag as a substitute for conventional construction materials and the improvement of the soft clay deposit. The specific gravity of copper slag is 3.45, and pH is 7.83. And the size distribution of the copper slag is well graded, so usage of copper slag will be extended in Geotechnical engineering fields. Copper slag has the permeability of 3.502${\times}$10 ̄$^2$cm/sec, which is satisfied with the criterion of sand drainage materials.. At the same time, it is thought to be suitable material for sand mat since it meets JIS of grain size distribution. The content of CaO from steel slag is about 40 percent while that of CaO from copper slag is about 5 percent. Based on this fact, copper slag has less hardening property compared to steel slag. Therefore, copper slag can be used as vertical drains, filters, and sand mats for improving the soft deposit.

  • PDF

Development of Replacing Material for Sand Mat by Using Precious Slag Ball (풍쇄 슬래그를 이용한 샌드매트 대체재 개발에 관한 연구)

  • Shin, Eun-Chul;Lee, Woon-Hyun;Yoo, Jeong-Hoon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.8 no.2
    • /
    • pp.55-62
    • /
    • 2009
  • Recently, new development projects are being carried out with the soft ground located along the West coast and the South coast. As soft grounds have complex engineering properties that the load bearing capacity is low and high compressibility, it needs to solve this problems Prior to structures are constructed by the method of improvement of soft ground. The sand mat is usually being used for improvement of soft ground as a horizontal drain material and loading base. But, as the volume is enormous and an amount of demanded sand is increased, it is state of short in supply. This paper presents the feasibility study to use of precious slag ball instead of sand mat as the replacing material through the basic soil property tests, the medium of discharge capacity test and analysis of settlement character.

  • PDF

Laboratory Test of Piled-Raft Foundation Improved by Gravel Mat (Gravel Mat로 보강된 말뚝지지 전면기초의 실내모형실험)

  • Seo, Young-Kyo;Lee, Jeong-Hoon
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.47-54
    • /
    • 2011
  • A piled raft foundation is one of the systems used to reduce the settlement of structures. However, the general design method for a piled raft foundation system assumes that the piles only support external loads, which exclude the bearing capacity of the raft itself. In this study, an experimental model test was performed to evaluate the raft capacity for the external load on the sand. Additionally, a part of the sandy ground under the raft was replaced with a gravel mat to reinforce the piled raft foundation system and increase the bearing capacity. Then, parametric studies of the reinforced ground were performed to determine the displacement and load-sharing ratio of the piled raft foundation system.