• Title/Summary/Keyword: sand flat

Search Result 193, Processing Time 0.031 seconds

An Analysis of Micro-landform and Its Grain Size of Tidal Flat in Gomso-Bay using Satellite Remote Sensing (위성원격탐사를 이용한 곰소만 간석지의 미지형과 퇴적물 입도특성 분석)

  • Jo, Wha-Rhong;Jo, Myung-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.3 no.1
    • /
    • pp.44-56
    • /
    • 2000
  • Through the ISODATA method of unsupervised classification, the micro-landform of Gomso-Bay tidal flat was classified into mud, mixed, and sand flats by using Landsat TM image. Each tidal flat shows on apparent differences in its topographical characteristics and grain size compositions. Mud flat is occupied the innermost part of the tidal flat. Sand flat is distributed adjacent to the entrance of the bay, while the mixed one is located in the central part of the bay. Mud flat deposits have fine grain size, more than 4 in average mean phi, bad sorting, more than 1 phi in standard devation, and positive skewness. Mixed and sand flat deposits have coarse grain size, less than 4 average mean phi, good sorting, less than 1 phi in standard daviation, and negative skewness. Topographically, the mud flat consists of flat surfaces and dissected channels. The average depth of dissected channels is about 2 meters. Meanwhile, sand flat has a very flat landform with well-developed ripple marks of less than 10 centimeters in average relief. And the mixed one shows the intermediate topographical characteristics of those of mud and sand flats.

  • PDF

The impact of sand addition to an intertidal area for the development of the Manila clam, Ruditapes philippinarum habitat on benthic community structure (the case of Ojjeom tidal flat in Gonam-myeon, Taean-gun) (바지락 치패발생장 조성을 위한 모래살포가 저서동물 군집구조에 미치는 영향 (태안군 고남면 옷점 갯벌 사례))

  • Yoon, Sang Pil;Song, Jae Hee;Choi, Yoon Seok;Park, Kwang Jae;Chung, Sang Ok;Han, Hyoung Kyun
    • The Korean Journal of Malacology
    • /
    • v.30 no.3
    • /
    • pp.259-271
    • /
    • 2014
  • This study was conducted to investigate the impact of sand addition to an intertidal for the development of the Manila clam habitat on benthic community structure. For this, we focused on the spatio-temporal changes in the surface sediment condition and benthic community structure including Manila clam before and after the event. Study site was the lower part of Ojjeom tidal flat in Gonam-myeon, Taean-gun where sand added to on July 2010. We set three stations at each of sand adding area (experimental plot) and non sand-adding area (control plot) and did sampling works ten times from June 2010 to October 2011. Directly after the event, surface sediments changed to very coarse sand, but the state was not maintained over two months because of seasonal sedimentation and finally got back to the original grain sizes in eight months. The number of species and density were temporarily reduced right after the event and polychaetes such as Sternaspis scutata, Ampharete arctica were most negatively affected by the event. However, the number of species and density quickly recovered from the reduction in four to six weeks owing to the recolonization by the existing species and species in the vicinity of the plot. However, despite the recovery of ecological indies, species composition was continuously changed from one to another, thereby community structure stayed unstable condition, especially in some stations with finer sediment in their original condition. After sand addition, density of Manila clam was prominently increased at only one station with coarser sediment in its original condition.

Meiobenthic Community Structure in Mud Flat and Sand Flat in Yeochari, Ganghwado (강화도 여차리 니질갯벌과 사질갯벌에 서식하는 중형저서동물의 군집구조)

  • Kim, Dong Sung;Min, Won Gi;Je, Jong Geel
    • Journal of Wetlands Research
    • /
    • v.6 no.1
    • /
    • pp.43-55
    • /
    • 2004
  • Meiobenthic community structure was studied in intertidal mud flat and sand flat of Yeochari in Ganghwado in May and August, 1998. Sixteen groups of meiofauna were found at all study sites in the Yeochari tidal flats. Nematodes were the most dominant animal group among the meiofaunal groups as a whole. Sarcomastigophorans, harpacticoid copepods, nauplius larvae of crustaceans and ciliophorans which were also important components of the meiofaunal community. All of these five faunal groups comprised more than 90% of total meiofauna. The maximum total density of meiobenthos was $5.8{\times}10^6ind./m^2$ at the station of sand flat in August and the minimum density was $4.0{\times}10^6ind./m^2$ at same station in May. Biomass of meiobenthos was $1.5g/m^2$(May), $2.3g/m^2$(August) at mud flat and $1.7g/m^2$(May), $2.6g/m^2$(August) at sand flat. At the station of mud flat in May, the highest density was observed within 1cm in depth of upper sediment and steeply decreased increasing depth of sediment. At the sand flat station in August, the highest density was also observed within 1cm in depth of upper sediment and decreased with depth, while the concentration of the animals at the surface was not conspicuous as the mud flat. The value of N/C(nematodes/benthic harpacticoids) ratio was the highest at the station of sand flat in May and the lowest at the sand flat in August.

  • PDF

Sedimentological Properties Of the Recent Intertidal Flat Environment, Southern Nam Yang Bay, West Coast Of Korea (남양만 남부 조간대 퇴적환경의 퇴적학적 특성에 관하여)

  • Chung, Gong Soo;Park, Yong Ahn
    • 한국해양학회지
    • /
    • v.13 no.1
    • /
    • pp.9-18
    • /
    • 1978
  • The intertidal flat depositional environment of Southern Nam Yang Bay, west coast of Korea has been studied to understand textural, geochemical and mineralogical characteristics. The intertidal flat environment can be divided into two subenvironments, that is, the mud flat and the sand flat due to the sediment textures. From thd outer sand flat to the inner mud flat the grain size of the sediments decreases and the mud content increases. It is suggested that the intertidal flat environment is in the progradation of marsh deposits in the mud flat. The chemical composition of the sediments is related to the sediment textures. The chemical index of maturity of the mud flat sediments is higher than that of the sand flat sediments. The clay minerals of the sediments are chlorite, illite, montmorillonite and kaolinite.

  • PDF

A Study on the Environment Change of Tidal Flat in the Cheonsu Bay Using Remotely Sensed Data (원격탐사 자료를 이용한 천수만 간석지 환경변화에 관한 연구)

  • Jang, Dong-Ho;Chi, Kwang-Hoon;Lee, Hyoun-Young
    • Journal of Environmental Impact Assessment
    • /
    • v.11 no.1
    • /
    • pp.51-66
    • /
    • 2002
  • The purpose of this study is to analyze the geomorphological environment changes of tidal flat in the Cheonsu Bay. Especially, it centers on the changes in the sedimentary environment using remote sensing data. Multi-temporal Landsat data and topographic maps were used in this study. The results are summarized as follows: the tidal flat of Cheonsu Bay changes in many ways depending on the direction of the tidal current. In the neighborhood of Ganwoldo, the scale of the tidal flat has continuously been expanded due to the superiority of sedimentation after a tide embankment was built. When we analyzed the grain size of sediments and implemented in-situ field survey, it was found that the innermost part of the bay consists of a mud flat, with the midway part mixed flat, and the nearest part to the sea sand flat. On the other hand, in the neighborhood of Seomot isle and its beach, sedimentation is superior in the eastern part whereas erosion is superior in the western part. In other words, the western coast of the beach is contacted with the open seas and under much influence of ocean wave. The eastern coast is placed at the entrance of the bay and has sand bar and tidal flat developed due to submarine deposits that are accumulated on the sea floor by the tidal current. In conclusions, remote sensing methods can be effectively applied for quantitative analysis of geomorphological changes in tidal flat, and it is expected that the proposed schemes can be applied to another geomorphological environments such as beach, sand dune, and sand wave.

Depositional Characteristics and Seasonal Change of Surface Sediment and Sedimentary Strucutre on the Doowoovi Tidal Flat, Southwestern Coast of Korea (한국 서남해안 두우리 조간대에서 표층 퇴적물 및 퇴적구조의 특성과 계절변화)

  • Baek Young Suk;Chun Seungsoo
    • The Korean Journal of Petroleum Geology
    • /
    • v.10 no.1_2 s.11
    • /
    • pp.10-17
    • /
    • 2004
  • The Doowoo-ri tidal flat in the southwestern Korean coast is a typical open-coast tidal flat which has no barriers in the offshore such as barrier island and sand bars. The difference of induced wave energy with seasons is affected directly on the distribution of surface sediment and the formation of sedimentary structures because the sedimentation by wind wave is relatively much important element in this open-coast tidal flat. This open-coast tidal flat can be classified into tidal beach, intertidal flat and lower mudflat according to the pattern of geomorphology and sediment type. The intertidal flat can be again divided into 3 types: sand flat, mixed flat and mud flat based on the primary sedimentary structure and sand/mud ratio. Doowoori tidal flat shows a seasonal change in the surface sedimentary facies based on sediment composition and primary sedimentary structure. The change is closely related to the direction and magnitude of monsoon wind and also to storm frequency. In winter and spring, when northwesterly wind is most dominant and strong and also storms are common, sand-flat facies is largely distributed on the intertidal flat, whereas mud-flat facies is most dominant during summer when weak southeasterly wind is common. In the fall season, mixed-flat facies is dominant on the flat. The Doowoori intertidal flat is covered by mud sediment which is ca. 20 cm in thickness in summer season. In winter season, surface sediment is changed from mud to sand because the summer mud is mostly eroded by strong wave action. Can-core peels in the intertidal flat show that parallel laminated mud or sand/mud and climbing ripple cross-laminated sandy silt are dominant on the upper intertidal flat $(0-1.3 {\cal}km)$ during summer season. On the other hand, on lower intertidal flat $(1.7-2.3 {\cal}km)$, dominant sedimentary facies is homogeneous mud. In winter, it is changed into parallel laminated and ripple cross-laminated sand facies.

  • PDF

Intertidal Flat Sediments and Charateristic Sedimentary Structures in the Changgu Bay, West Coast of Korea (한국 서안 장구만에 발달한 조간만대의 퇴적상 및 퇴적구조)

  • 김준래;박수철
    • 한국해양학회지
    • /
    • v.20 no.1
    • /
    • pp.43-49
    • /
    • 1985
  • The Changgu Bay, a macrotidal coastal embayment of the west coast of Korea, is an area of extensive intertidal sedimentation. Three types of major sediment facies are identified based on grain size analysis: silt, sandy-silt, and silty-sand facies. It is found that intertidal sediment facies comprise a continuum of progressively finer sediments from lower flat to upper one. The X-radiography of the cores in the intertidal zone show a wide variety of physical and biogenic sedimentary structures. The major structures include bioturbation, current ripple and parallel-laminae. Bioturbations are observed in all core samples, especially in the silt flat zone. The degree of bioturbation increases laterally from sandy facies (low tide level) to silt facies (high tide level) due to favorable properties of fine mud for organisms. The ripple laminae, composed of current ripple foresets, characterize the silty-sand and sandy-silt flats. The parallel laminae are extensively bioturbated, and two types of laminae are distinguishable; thick-laminae with a thickness of 1 to 5mm and thin-laminae with a thickness of less than 1mm.

  • PDF

Chemical Properties of Sediment in Nanakita Estuarine Tidal Flat: Estimation of Sedimentary Organic Matter Origin by Stable Isotope and Fatty Acid

  • Shin, Woo-Seok;Aikawa, Yoshio;Nishimura, Osamu
    • Environmental Engineering Research
    • /
    • v.17 no.2
    • /
    • pp.77-82
    • /
    • 2012
  • The spatial variation of organic matter sources in tidal flat sediment of the Nanakita River estuary, involving Gamo lagoon on the north-east coast of Honshu Island, Japan, was examined using carbon stable isotopes and fatty acid biomarkers. The spatial variation of total organic carbon (TOC) contents and ${\delta}^{13}C$ values were highly variable in between the stations, such as sandy flat (1.3 mg/g, -21.0‰), sand-muddy flat (2.6 mg/g, -21.9‰), and muddy flat (24.9 mg/g, -25.9‰), respectively. Particularly, at the muddy flat, high TOC content and low ${\delta}^{13}C$ value of the sediments indicated that the surface sediment was composed largely of terrestrial organic matter. Whereas, at the sandy flat and sand-muddy flat, the high ratios of diatom and bacteria biomarkers indicated the high contribution of abundant microorganism along with marine organic matter in sediment composition. From these results, it considered that the amount and origin of transported sedimentary organic matter indicated different characteristics in this study stations.

Role of Sand Shoal in the Intertidal Flat Sedimentation, Gomso Bay, Southwestern Korea (서해 곰소만 조간대 퇴적작용에서 모래톱의 역할)

  • Lee, In-Tae;Chun, Seung Soo
    • Journal of the Korean earth science society
    • /
    • v.22 no.2
    • /
    • pp.120-129
    • /
    • 2001
  • A sand shoal (1300 m long and 400 m wide) with an orientation of north-south is formed on the lower tidal flat of Gomso Bay, southwestern coast of Korea. Surface bedforms, sedimentary structures, sedimentation rate, grain size distribution and can-corer sediments have been measured and analysed along the sand shoal proper zone B and its offshore zone A and onshore zone C during the period of 14 months. These three zones can be differentiated based on sedimentological characteristics: A zone - fine sand (3${\varphi}$ mean), linguoid-type ripples, 70 mm/month in sedimentation rate and no bioturbation, B zone - medium sand (2.5${\varphi}$ mean), dunes (4${\sim}$5 m in wavelength), 30 mm/month in sedimentation rate and no bioturbation, and C zone - coarse silt (5${\varphi}$ mean), sinuous-type ripples, 10 mm/month in sedimentation rate and well-developed bioturbation. These characteristics indicate that the zone C represents a relatively low-energy regime environment whereas the zone A corresponds to a relatively high-energy environment. The zone B would play an important role for a barrier to dissipate the approaching wave energy, resulting in maintaining of low-energy conditions in the inner part of Gomso-Bay intertidal flat behind.

  • PDF

The vertical environmental characteristics in the tidal flat sediments (갯벌의 수직적 환경 특성)

  • 김종구;유선재
    • Journal of Environmental Science International
    • /
    • v.9 no.2
    • /
    • pp.125-129
    • /
    • 2000
  • As one of the fundamental survey to evaluate purification capacity of pollutants at the tidal flat sediments, we studied vertical environmental characteristics in three tidal flat sediments, Chunjangdae, Eueunri and Gyewhado. These are dissmilar to external feature in each other. The results of this study may be summarized as followed; As the results of particle analysis, Eueunri tidal flat fediment located in Keum river estuary consists of 98.98% as silt & clay, Chunjangdae tidal flat sediment located in SeocheonGun consists of 97.99% as sand. And Gyewhado tidal flat sediment located in Saemankeum in Saemankeum area consists area consists of 32.81% as silt & clay and 67.19% as sand. The concentration of organic pollutants(I.L., COD, POC, PON) in Eueunri tidal flat sediment which highly content of silt & clay were 3~4 times higher than others. The concentration of organic pollutants at each layer were slightly increase goes with deepen layer. The linear correlation between I.L. and COD, POC, PON were obtained. Correlation coefficients were in range of 0.821~0.940. Also the correlation between pH and COD, POC, PON were high(>r=0.9). Filteration rate in Chunjangdae tidal flat sediment was 0.01584cm/s as mean value, but the other were almost nothing filtered off.

  • PDF