• Title/Summary/Keyword: sand Box

Search Result 108, Processing Time 0.023 seconds

Multi-scale calibration of a line-style sand pluviator

  • Yifan Yang;Dirk A. de Lange;Huan Wang;Amin Askarinejad
    • Geomechanics and Engineering
    • /
    • v.37 no.5
    • /
    • pp.431-441
    • /
    • 2024
  • A newly developed line-style sand pluviator has been calibrated to prepare repeatable sand specimens of specific statuses of compactness and homogeneity for laboratory tests. Sand is falling via a bottom slot of a fixed hopper, and by moving the sample container under the slot, the container is evenly filled with sand. The pluviator is designed with high flexibility: The falling height of sand, the hopper's opening width and the relative moving speed between the hopper and the sample box can be easily adjusted. By changing these control factors, sand specimens of a wide range of densities can be prepared. A series of specimen preparation was performed using the coarse Merwede River sand. Performance of the pluviator was systematically evaluated by exploring the alteration of achievable density, as well as checking the homogeneity and fabric of the prepared samples by CT scanning. It was found that the density of prepared coarse sand samples has monotonic correlations with none of the three control factors. Furthermore, CT scanning results suggested that the prepared samples exhibited excellent homogeneity in the horizontal direction but periodical alteration of density in the vertical direction. Based on these calibration test results, a preliminary hypothesis is proposed to describe the general working principles of this type of pluviators a priori, illustrating the mechanisms dominating the non-monotonic correlations between control factors and the relative density as well as the vertically prevalent heterogeneity of specimens. Accordingly, practical recommendations are made in a unified framework in order to lessen the load of similar calibration work.

Influence of plastic viscosity of mix on Self-Compacting Concrete with river and crushed sand

  • Rama, J.S. Kalyana;Sivakumar, M.V.N.;Kubair, K. Sai;Vasan, A.
    • Computers and Concrete
    • /
    • v.23 no.1
    • /
    • pp.37-47
    • /
    • 2019
  • In view of the increasing utility of concrete as a construction material, the major challenge is to improve the quality of construction. Nowadays the common problem faced by many of the concrete plants is the shortage of river sand as fine aggregate material. This led to the utilization of locally available materials from quarries as fine aggregate. With the percentage of fines present in Crushed Rock Fines (CRF)or crushed sand is more compared to river sand, it shows a better performance in terms of fresh properties. The present study deals with the formulation of SCC mix design based on the chosen plastic viscosity of the mix and the measured plastic viscosity of cement pastes incorporating supplementary cementitious materials with CRF and river sand as a fine aggregate. Four different combinations including two binary and one ternary mix are adopted for the current study. Influence of plastic viscosity of the mix on the fresh and hardened properties are investigated for SCC mixes with varying water to cement ratios. It is observed that for an increasing plastic viscosity of the mix, slump flow, T500 and J-ring spread increased but V-funnel and L-box decreased. Compressive, split tensile and flexural strengths decreased with the increase in plastic viscosity.

A Study on the Soil Conversion Factor of Underwater Soils (수중토사의 토량환산계수에 관한 연구)

  • Park, Sung-Sik;Bae, Yeon-Hoi;Moon, Hong-Duk
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.7
    • /
    • pp.5-12
    • /
    • 2015
  • In this study, the deposition of dredged soils from domestic rivers is simulated in the laboratory using a small soil box. In the tests, small sand with 0.002-0.85 mm, large sand with 0.85-2 mm, and gravel 4.75-5.6 mm are air or water-pluviated into the box. Such various deposition processes are simulated and their dry densities are measured. While dredging or piling such soils, their volume may change. The loss of such soils is calculated by a soil conversion factor C. The C value was determined as 0.91 for small sand, 0.96 for large sand, and 0.91 for gravel. The drainage through soil piles may occur and result in effective stress increase. This may cause the volume change of soils and in order to consider such effect it is necessary to recalculate C values. As a result, dry density increased by 5-12% when the drainage effect is considered. When the drainage effect is considered, the value of soil conversion factor C was 0.81 for small sand, 0.92 for large sand, and 0.82 for gravel. Eventually, the C value decreased up to 4-12%.

Bottom sediments of the Asan bay, west coast of Korea (아산만일대(牙山灣一帶) 해저퇴적물(海底堆積物)에 대(對)하여)

  • Kim, Sung-woo;Chang, Jeong-hae;Park, Yong-ahn
    • Economic and Environmental Geology
    • /
    • v.11 no.2
    • /
    • pp.81-88
    • /
    • 1978
  • Nearly 300 bottom sediments and 20 box-cores were sampled from the Asan bay. The central portion of the Asan bay is covered by sand, slightly gravelly sand and gravelly muddy sand. Between the central and marginal zones gravelly mud and slightly gravelly sandy mud are characteristically distributed. The gravel population in the sediments seems to be originated from the rocky bottom on the area near the bay because the gravel is angular and composed of the schist and gneiss. The quartz/feldspar ratio is about 3/2. It is considered to be that the amount of feldspar in this bay is much higher than that of any other areas in the Yellow Sea. This is considerd to be comparatively short distance of transport ion of these sediment from the provenance.

  • PDF

The Influence of the Volume Contents of Sand in Mortar on the Properties of Self Compacting Concrete (잔골재 용적비가 고유동 콘크리트의 성질에 미치는 영향)

  • Choi Jae-Jin;Yoo Jung-Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.755-758
    • /
    • 2004
  • Self-compactability is defined as a capability of concrete to be uniformly filled and compacted in every corners of formwork by its self-weight without vibration during placing. To evaluate the self compactability of self compacting concrete, the slump flow, the time of slump flow at 500mm and U-box apparatus testing methods are used. In this research, the fresh and hardened properties of self compacting concrete using ground granulated blast furnace slag as a part of cement were investigated for the volume contents of sand in the mortar. The workability, flowing characteristics, air content and compressive strength of concrete were tested and the results were compared with the different volume contents of sand in the mortar. In the experiment, we acquired satisfactory results at the point of flowing characteristics and strengths of self compacting concrete.

  • PDF

Sand-Box Evaluation for Vibration-Attenuation of Concrete Panels with Recycled Materials (재활용재 혼입콘크리트 패널의 진동감쇠성에 대한 사조실험)

  • 정영수;최우성;조성호
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.4
    • /
    • pp.171-182
    • /
    • 1998
  • Vibration-controlled concrete has been developed by using various concrete mixtures, such as latex, rubber powders, plastic resins and polystyrene(styrofoam). As part of the recycling research of obsolete aged tires and plastic materials, various vibration-reducing mixtures are used for 10 concrete panels having above 200 kg/cm$^2$ in uniaxial compressive strength. Plywood box with sand uniformly saturated by the raining device has been used for the analysis of the impact wave, of which data have been transfered by the FFT technique to comparatively investigate damping ratios of 10 concrete panels.According to wave propagation analysis on vibration-controlled concrete for this research, it can be concluded that Latex concrete has relatively larger damping ratios than those for noncontrolled normal concrete in a similar compressive strength

Incorporation of marble waste as sand in formulation of self-compacting concrete

  • Djebien, Rachid;Hebhoub, Houria;Belachia, Mouloud;Berdoudi, Said;Kherraf, Leila
    • Structural Engineering and Mechanics
    • /
    • v.67 no.1
    • /
    • pp.87-91
    • /
    • 2018
  • Concrete is the most widely used building material all over the world, because of its many technical and economic qualities. This pressure on the concrete resource causes an intensive exploitation of the quarries of aggregates, which results in a exhaustion of these and environmental problems. That is why recycling and valorization of materials are considered as future solutions, to fill the deficit between production and consumption and to protect the environment. This study is part of the valorization process of local materials, which aims to reuse marble waste as fine aggregate (excess loads of marble waste exposed to bad weather conditions) available in the marble quarry of Fil-fila (Skikda, East of Algeria) in the manufacture of self-compacting concretes. It consists of introducing the marble waste as sand into the self-compacting concrete formulation, with variable percentages (25%, 50%, 75% and 100%) and to study the development of its properties both in fresh state (air content, density, slump flow, V-funnel, L-box and sieve stability) as well as the hardened one (compressive strength and flexural strength). The results obtained showed us that marble wastes can be used as sand in the manufacture of self compacting concretes.

Evaluation of Heat Transfer Characteristics in Double-Layered and Single-Layered Soils (이층지반과 단일지반의 열전달 거동 특성 평가)

  • Yoon, Seok;Park, Skan;Park, Hyun-Ku;Go, Gyu-Hyun;Lee, Seung-Rae
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.7 no.2
    • /
    • pp.43-50
    • /
    • 2011
  • This paper presents how to analyze heat transfer characteristics of double-layered soils. Thermal response tests were conducted to measure the ground thermal conductivities of Joomunjin sand and double layered soils filled in a steel box of which the size is $5m{\times}1m{\times}1m$. Double-layered soils were composed of Joomunjin sand and Kaoline clay. Each thermal conductivity of Joomunjin sand and Kaloine clay was measured by using Heat Flow Meter considering different void ratio. The ground thermal conductivity of double-layered soils was 15% smaller than that of Joomunjin sand.

Experimental and analytical study on improvement of flexural strength of polymer concrete filled GFRP box hybrid members

  • Ali Saribiyik;Ozlem Ozturk;Ferhat Aydin;Yasin Onuralp Ozkilic;Emrah Madenci
    • Steel and Composite Structures
    • /
    • v.50 no.4
    • /
    • pp.475-487
    • /
    • 2024
  • The usage of fiber-reinforced polymer materials increases in the construction sector due to their advantages in terms of high mechanical strength, lightness, corrosion resistance, low density and high strength/density ratio, low maintenance and painting needs, and high workability. In this study, it is aimed to improve mechanical properties of GFRP box profiles, produced by pultrusion method, by filling the polymer concrete into them. Within the scope of study, hybrid use of polymer concrete produced with GFRP box profiles was investigated. Hybrid pressure and bending specimens were produced by filling polymer concrete (polyester resin manufactured with natural sand and stone chips) into GFRP box profiles having different cross-sections and dimensions. Behavior of the produced hybrid members was investigated under bending and compression tests. Hollow GFRPxx profiles, polymer-filled hybrid members, and nominative polymeric concrete specimens were tested as well. The behavior of the specimens under pressure and bending tests, and their load bearing capacities, deformations and changes in toughness were observed. According to the test results; It was deduced that hybrid design has many advantages over its component materials as well as superior physical and mechanical properties.

Comparative Study on Compressive Strength of Concrete with New Sand-Cap and Neoprene Pad

  • Park, Young-Shik;Suh, Jin-Kook
    • International Journal of Concrete Structures and Materials
    • /
    • v.2 no.1
    • /
    • pp.15-19
    • /
    • 2008
  • The most typical capping method for concrete structures is a sulfur-mortar compound capping, provided it satisfied the standard criterion set forth by ASTM C 617, but this conventional bonded-type method has many problems. It exhibits relatively the smaller unreliable value of the strength of high-strength concrete due to the differences of elasticity and strength between the cylinder and the cap, and manifests poor serviceability such as dangerous working tasks or a waste of the working time. To prevent these problems, unbonded-type capping methods have taken the place of the conventional methods in recent years. One of the popular methods is the use of synthetic rubber like a neoprene pad. Serious problems still remain in this method, which include the consideration of its chemical characteristics in consideration of the selection, the safekeeping and the economy of the pads. Moreover, the synthetic rubber pads cannot be used in concrete cylinder with strength greater than 80 MPa according to ASTM C 1231-00. New 'sand-capping method' presented in this study, can be applicable to the compressive strength evaluation of the high strength concrete in the range of $70{\sim}100\;MPa$. This new method has better simplicity and reliability than those of existing 'sand-box', because usual materials such as standard sand and simply-devised apparatus are used for the capping system. The statistical analysis of the test results revealed that the new sand-capping method exhibited the smallest deviation and dispersion, attesting for its much better reliability than other methods specified in ASTM C 1231/1231M.