• 제목/요약/키워드: sample selection

검색결과 685건 처리시간 0.02초

표본선택 편의를 반영한 임금결정요인 분석 (The wage determinants applying sample selection bias)

  • 박성익;조장식
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권5호
    • /
    • pp.1317-1325
    • /
    • 2016
  • 본 연구에서는 한국고용정보원에서 실시한 "2013 고졸자 취업진로조사" 자료를 활용하여 특성화고 졸업자의 임금결정요인을 분석하였다. 일반적으로 임금은 개인의 취업여부와 임금의 크기에 대한 두 가지의 복합적인 정보를 담고 있다. 그러나 임금 결정요인분석의 많은 선행연구에서는 후자의 정보만을 대상으로 최소제곱법에 기초한 선형 회귀분석을 수행함으로써 표본선택에 의한 편의 (sample selection bias) 문제가 발생하게 된다. 본 연구에서는 임금결정요인분석에서 표본선택에 의한 편의 문제를 극복하기 위해 Tobit 모형과 Heckman의 표본선택 모형을 분석에 활용하였다. 주요 분석 결과를 요약하면 다음과 같다. 먼저 Tobit 모형과 Heckman의 표본선택 모형에 대한 타당성은 통계적으로 유의함을 알 수 있었다. 성별은 취업확률과 임금의 크기에서 모두 통계적으로 유의한 것으로 나타났다. 마이스터고 졸업생은 취업확률과 임금의 크기 모두 기타고 졸업생에 비해서 높은 것을 알 수 있었으며, 부모소득이 높을수록 취업확률과 임금의 크기가 모두 통계적으로 유의하게 증가하였다. 부모학력이 고졸이하에 비해서 대졸이상이 취업확률은 통계적으로 유의하게 낮지만, 임금의 크기는 높게 나타났다. 고교성적은 높을수록, 고교 만족도가 높을수록, 그리고 자격증 수가 많을수록 취업확률과 임금의 크기 모두 통계적으로 유의하게 높은 것을 알 수 있다.

과대산포 가산자료의 새로운 표본선택모형 (A new sample selection model for overdispersed count data)

  • 조성은;조준;김형문
    • 응용통계연구
    • /
    • 제31권6호
    • /
    • pp.733-749
    • /
    • 2018
  • 어떠한 연구에서 관심의 대상이 되는 관찰치가 부분적으로 관측 가능할 때 표본선택의 문제가 일어난다. 이러한 자료를 분석하기 위해 헤크만은 표본선택 모형을 개발하였고 이변량 정규분표의 가정 하에 최대우도방법을 사용하여 모수를 추정하였다. 최근 이항자료와 포아송 자료에 대한 표본선택모형이 제안되었다. 이를 분포조정에 기초하여 과대산포 자료에 대한 모형으로 확장하고자 한다. 표본선택이 없는 과대산포 자료는 흔히 음이항 분포로 분석되어진다. 따라서 음이항 분포를 이용하고 분포조정을 도입한 과대산포 자료에 대한 새로운 모형을 제시하고자 한다. 실제 자료를 이용하여 분석을 하였다. 모의실험 결과 프로파일 우도함수를 이용하여 모수에 대해 추정한 결과는 안정적이다.

기업의 부채조달원 선택에 관한 연구: 패널표본선택모형의 적용 (Corporate Debt Choice: Application of Panel Sample Selection Model)

  • 이호선
    • 한국콘텐츠학회논문지
    • /
    • 제15권7호
    • /
    • pp.428-435
    • /
    • 2015
  • 우리 기업의 타인자본조달에 관한 통계지표를 살펴보면 대기업은 은행의 기업대출과 회사채 등의 직접금융을 함께 사용하여 자본을 조달하고 있는 반면, 중소기업은 은행대출에 계속 의지하고 있음을 확인할 수 있다. 이러한 현실을 감안하여 본 연구에서는 기업의 타인자본조달을 실증분석하는데 있어 표본선택편의가 존재하고 이를 감안한 연구모형을 사용해야 한다고 주장한다. 이러한 주장을 뒷받침하기 위해 1990년부터 2013년까지의 상장기업 자료를 통해 부채구조를 설명하는 실증분석을 수행한 결과 선행연구에서와 마찬가지로 기업의 회사채사용에 있어 기업규모, 1대주주 지분율, 유형자산 구성비, 수익성, 배당성향 등이 영향을 미치고 있음을 확인할 수 있었으며, 패널표본선택모형에 투입된 Inverse Mills Ratio 변수가 유의하게 나타나 패널표본선택모형을 사용하는 것이 타당함을 확인하였다. 이러한 결과는 기업의 타인자본조달에 있어 표본선택편의가 존재하며 이에 관한 연구에서 이를 반드시 감안해야 함을 의미한다.

A Note on Parametric Bootstrap Model Selection

  • Lee, Kee-Won;Songyong Sim
    • Journal of the Korean Statistical Society
    • /
    • 제27권4호
    • /
    • pp.397-405
    • /
    • 1998
  • We develop parametric bootstrap model selection criteria in an example to fit a random sample to either a general normal distribution or a normal distribution with prespecified mean. We apply the bootstrap methods in two ways; one considers the direct substitution of estimated parameter for the unknown parameter, and the other focuses on the bias correction. These bootstrap model selection criteria are compared with AIC. We illustrate that all the selection rules reduce to the one sample t-test, where the cutoff points converge to some certain points as the sample size increases.

  • PDF

Heckman의 표본선택모형을 이용한 대졸자의 임금결정요인 분석 (The wage determinants of college graduates using Heckman's sample selection model)

  • 조장식
    • Journal of the Korean Data and Information Science Society
    • /
    • 제28권5호
    • /
    • pp.1099-1107
    • /
    • 2017
  • 본 연구에서는 한국고용정보원에서 실시한 "2014년 대졸자 직업이동 경로조사" 자료를 활용하여 대졸자의 임금결정요인을 분석하였다. 일반적으로 임금은 개인의 취업여부와 임금의 크기에 대한 두 가지의 복합적인 정보를 담고 있으나, 많은 선행연구에서는 임금의 크기에 대한 정보만을 활용하여 선형 회귀분석을 수행함으로써 표본선택에 위한 편의 (sample selection bias) 문제가 발생하게 된다. 이런 문제점을 극복하기 위해 본 연구에서는 Heckman의 표본선택 모형을 분석에 활용하였다. 주요 분석 결과를 요약하면 다음과 같다. 먼저 Heckman의 표본선택 모형에 대한 타당성은 통계적으로 유의함을 알 수 있었다. 남자는 여자에 비해서 취업확률과 임금의 크기 모두 통계적으로 유의하게 높게 나타났으며, 연령이 증가하고 부모의 소득이 증가 할수록 취업확률과 임금의 크기 모두 높게 나타났다. 또한 대학만족도가 높아질수록, 그리고 취득한 자격증 수가 증가할수록 취업확률과 임금 모두 증가하는 경향이 있는 것으로 나타났다.

비정규분포를 이용한 표본선택 모형 추정: 자동차 보유와 유지비용에 관한 실증분석 (An Alternative Parametric Estimation of Sample Selection Model: An Application to Car Ownership and Car Expense)

  • 최필선;민인식
    • Communications for Statistical Applications and Methods
    • /
    • 제19권3호
    • /
    • pp.345-358
    • /
    • 2012
  • 표본선택 모형을 최우추정법으로 추정할 때 오차항의 분포를 제대로 가정하는 것이 매우 중요하다. 표본선택 모형의 선택 방정식과 본 방정식의 오차항 분포를 일반적으로 이변량 정규분포로 가정하지만, 이 가정이 오차항의 실제 분포를 과도하게 제약할 가능성이 있다. 본 연구는 표본선택 모형의 오차항 분포로 $S_U$-정규분포를 도입한다. $S_U$-정규분포는 분포의 비대칭성과 초과첨도를 허용한다는 측면에서 정규분포보다 훨씬 유연하면서, 동시에 정규분포를 극한분포의 형태로 포함하고 있다. 또한 정규분포처럼 다변량 분포함수가 존재하기 때문에 표본선택 모형과 같은 다변량 모형에서도 활용할 수 있다. 본 논문은 $S_U$-정규분포를 이용한 표본선택 모형에서 로그우도 함수와 조건부 기댓값을 도출하고, 시뮬레이션을 통해 정규분포 모형과 추정성과를 비교한다. 또한 자동차 보유 가구들의 자동차 유지비에 관한 실제 데이터를 이용하여 $S_U$-정규분포 표본선택 모형의 추정결과를 제시한다.

김 가정 소비 지출의 결정 요인 분석 : 선택 편의를 고려한 Type II 토빗 모형을 이용하여 (A Study on Determinants Affecting At-home Laver Consumption Expenditures : Type II Tobit Model Treating Sample Selection Bias)

  • 이민규;박은영
    • 수산경영론집
    • /
    • 제40권3호
    • /
    • pp.147-167
    • /
    • 2009
  • The objective of this study is to analyze the determinants of at-home laver consumption expenditures using the data from a survey of households implemented in 2009. It happened that non-response ratios of monthly expenditures on dry laver and flavored laver among sampled households are 18.8% and 25.6%. Accordingly, this study tries to analyze the determinants affecting at-home laver consumption expenditures by using type II tobit model, one of sample selection models, to deal with sample selection bias caused from non-response data. Analysis results show the age variable positively affects expenditures on dry laver but negatively contributes to expenditures on flavored laver. In addition, the household size, the household's income, the degree of preference for laver have positive relationships with both expenditures. Household size elasticity and income elasticity of the expenditure on dry laver are estimated as 0.220 and 0.251. In the case of flavored laver, these elasticities are estimated as 0.484 and 0.261. Such analysis results can provide information on division of the at-home laver consumption market into groups with high willingness to expense and implementation of detailed marketing strategies to increase at-home laver consumption. The methodology of this study can be applied to consumer preference analysis on other marine products and other analyses on sample with non-response data in the fishery research.

  • PDF

Efficient Controlled Selection

  • Ryu, Jea-Bok;Lee, Seung-Joo
    • Communications for Statistical Applications and Methods
    • /
    • 제4권1호
    • /
    • pp.151-159
    • /
    • 1997
  • In sample surveys, we expect preferred samples that reduce the survey cost and increase the precision of estimators will be selected. Goodman and Kish (1950) introduced controlled selection as a method of sample selection that increases the probability of drawing preferred samples, while decreases the probability of drawing nonpreferred samples. In this paper, we obtain the controlled plans using the maximum entropy principle, and when the order of nonpreferred samples is considered, we propose the algorithm to obtain a controlled plan.

  • PDF

Camera Source Identification of Digital Images Based on Sample Selection

  • Wang, Zhihui;Wang, Hong;Li, Haojie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권7호
    • /
    • pp.3268-3283
    • /
    • 2018
  • With the advent of the Information Age, the source identification of digital images, as a part of digital image forensics, has attracted increasing attention. Therefore, an effective technique to identify the source of digital images is urgently needed at this stage. In this paper, first, we study and implement some previous work on image source identification based on sensor pattern noise, such as the Lukas method, principal component analysis method and the random subspace method. Second, to extract a purer sensor pattern noise, we propose a sample selection method to improve the random subspace method. By analyzing the image texture feature, we select a patch with less complexity to extract more reliable sensor pattern noise, which improves the accuracy of identification. Finally, experiment results reveal that the proposed sample selection method can extract a purer sensor pattern noise, which further improves the accuracy of image source identification. At the same time, this approach is less complicated than the deep learning models and is close to the most advanced performance.

NEW SELECTION APPROACH FOR RESOLUTION AND BASIS FUNCTIONS IN WAVELET REGRESSION

  • Park, Chun Gun
    • Korean Journal of Mathematics
    • /
    • 제22권2호
    • /
    • pp.289-305
    • /
    • 2014
  • In this paper we propose a new approach to the variable selection problem for a primary resolution and wavelet basis functions in wavelet regression. Most wavelet shrinkage methods focus on thresholding the wavelet coefficients, given a primary resolution which is usually determined by the sample size. However, both a primary resolution and the basis functions are affected by the shape of an unknown function rather than the sample size. Unlike existing methods, our method does not depend on the sample size and also takes into account the shape of the unknown function.