• Title/Summary/Keyword: sample rate converter

Search Result 28, Processing Time 0.021 seconds

A 9-bit ADC with a Wide-Range Sample-and-Hold Amplifier

  • Lim, Jin-Up;Cho, Young-Joo;Choi, Joong-Ho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.4 no.4
    • /
    • pp.280-285
    • /
    • 2004
  • In this paper, a 9-bit analog-to-digital converter (ADC) is designed for optical disk drive (ODD) servo applications. In the ADC, the circuit technique to increase the operating range of the sample-and-hold amplifier is proposed, which can process the wide-varying input common-mode range. The algorithmic ADC structure is chosen so that the area can be significantly reduced, which is suitable for SoC integration. The ADC is fabricated in a 0.18-$\mu\textrm{m} $ CMOS 1P5M technology. Measurement results of the ADC show that SNDR is 51.5dB for the sampling rate of 6.5MS/s. The power dissipation is 36.3mW for a single supply voltage of 3.3V.

Linkage between Digital Down Converter System and Spectrum Sensing Method (Digital Down Converter 시스템과 스펙트럼 센싱 기법 연동 방안)

  • Hong, Moo-Hyun;Moon, Ki-Tak;Kim, Ju-Seok;Kim, Kyung-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.3
    • /
    • pp.43-50
    • /
    • 2010
  • DDC(Digital Down Converter) is a conversion technology to decimate to a lower sampling rate and DDC for the future development of communications technology has the necessary skills. So, it has been recognized in the wireless and the SDR(Software Defined Radio) system as essential components. In addition, research is underway on spectrum sensing for efficient communications environment due to the shortage of frequency resources. In this paper, the DDC systems were analyzed for CIC(Cascaded Integrator Comb) Filter, WDF(Wave Digital Filter), SRC(Sample Rate Conversion) each module. Moreover, we proposed a linkage effectively between DDC system and Spectrum Sensing for improve the efficiency of use of frequency by computer simulations. The simulation results of the DDC system was applied to the spectrum sensing capabilities. Also, performance and complexity of the results were derived and proposed system was the result of the check.

Front-End Design for Underwater Communication System with 25 kHz Carrier Frequency and 5 kHz Symbol Rate (25kHz 반송파와 5kHz 심볼율을 갖는 수중통신 수신기용 전단부 설계)

  • Kim, Seung-Geun;Yun, Chang-Ho;Park, Jin-Young;Kim, Sea-Moon;Park, Jong-Won;Lim, Young-Kon
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.166-171
    • /
    • 2010
  • In this paper, the front-end of a digital receiver with a 25 kHz carrier frequency, 5 kHz symbol rate, and any excess-bandwidth is designed using two basic facts. The first is known as the uniform sampling theorem, which states that the sampled sequence might not suffer from aliasing even if its sampling rate is lower than the Nyquist sampling rate if the analog signal is a bandpass one. The other fact is that if the sampling rate is 4 times the center frequency of the sampled sequence, the front-end processing complexity can be dramatically reduced due to the half of the sampled sequence to be multiplied by zero in the demixing process. Furthermore, the designed front-end is simplified by introducing sub-filters and sub-sampling sequences. The designed front-end is composed of an A/D converter, which takes samples of a bandpass filtered signal at a 20 kHz rate; a serial-to-parallel converter, which converts a sampled bandpass sequence to 4 parallel sub-sample sequences; 4 sub-filter blocks, which act as a frequency shifter and lowpass filter for a complex sequence; 4 synchronized switches; and 2 adders. The designed front-end dramatically reduces the computational complexity by more than 50% for frequency shifting and lowpass filtering operations since a conventional front-end requires a frequency shifting and two lowpass filtering operations to get one lowpass complex sample, while the proposed front-end requires only four filtering operation to get four lowpass complex samples, which is equivalent to one filtering operation for one sample.

High Speed, High Resolution CMOS Sample and Hold Circuit (고속, 고해상도 CMOS 샘플 앤 홀드 회로)

  • Kim Won-Youn;Park Kong-Soon;Park Sang-Wook;Yoon Kwang-Sub
    • Proceedings of the IEEK Conference
    • /
    • 2004.06b
    • /
    • pp.545-548
    • /
    • 2004
  • The paper describes the design of high-speed, high-resolution Sample-and-Hold circuit which shows the conversion rate 80MHz and the power supply of 3.3v with 0.35um CMOS 2-poly 4-metal process for high-speed, high resolution Analog-to-Digital Converter. For improving Dynamic performance of Sample-and-Hold, Two Double bootstrap switch and high performance operational amplifier with gain booster, which are used. and For physical stability of Sample and Hold circuit, reduces excess voltage of gate in bootstrap switch. Simulation results using HSPICE shows the SFDR of 71dB, 75dB in conversion rate of 80MHz result for two inputs(0.5Vpp, 10MHz and 1Vpp, 10MHz) and the power dissipation of 48mW at single 3.3V supply voltage.

  • PDF

A Design Method of Multistage FIR Filters for Sampling Rate Converters (표본화 속도 변환기용 다단 FIR 필터의 설계방법)

  • Baek, Je-In
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.1
    • /
    • pp.150-158
    • /
    • 2010
  • Filtering is necessary for the SRC(sample rate converter), that is used to change the sampling rate of a digital signal. The larger the conversion ratio of the sampling rate becomes, the more signal processing is needed for the filter, which means more complexity on realization. Thus it is important to reduce the amount of signal processing for the case of substantial conversion ratios. In this paper it is presented an efficient design method of a multistage FIR(finite impulse response) filter, with which the rate conversion occurs in stages rather than in one step. In this method, filter searching is performed exhaustively over all possible factorization of the conversion ratio, and also the filter complexity is measured based on direct realization rather than on estimation. It has been shown a designed multistage filter to have a less number of multiplications for filtering operation in comparison with a conventionally designed one. It has also been found that by allowing some variations of the filter architecture such as a halfband filter or a filter with multiple transition bands, the number of multiplications can be reduced further.

Implementation of sigma-delta A/D converter IP for digital audio

  • Park SangBong;Lee YoungDae
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.199-203
    • /
    • 2004
  • In this paper, we only describe the digital block of two-channel 18-bit analog-to-digital (A/D) converter employing sigma-delta method and xl28 decimation. The device contains two fourth comb filters with 1-bit input from sigma­delta modulator. each followed by a digital half band FIR(Finite Impulse Response) filters. The external analog sigma-delta modulators are sampled at 6.144MHz and the digital words are output at 48kHz. The fourth-order comb filter has designed 3 types of ways for optimal power consumption and signal-to-noise ratio. The following 3 digital filters are designed with 12tap, 22tap and 116tap to meet the specification. These filters eliminate images of the base band audio signal that exist at multiples of the input sample rate. We also designed these filters with 8bit and 16bit filter coefficient to analysis signal-to-noise ratio and hardware complexity. It also included digital output interface block for I2S serial data protocol, test circuit and internal input vector generator. It is fabricated with 0.35um HYNIX standard CMOS cell library with 3.3V supply voltage and the chip size is 2000um by 2000um. The function and the performance have been verified using Verilog XL logic simulator and Matlab tool.

  • PDF

A Noncoherent UWB Communication System for Low Power Applications

  • Yang, Suck-Chel;Park, Jung-Wan;Moon, Yong;Lee, Won-Cheol;Shin, Yo-An
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.4 no.3
    • /
    • pp.210-216
    • /
    • 2004
  • In this paper, we propose a noncoherent On-Off Keying (OOK) Ultra Wide Band (UWB) system based on power detection with noise power calibration for low power applications. The proposed UWB system achieves good bit error rate performance which is favorably comparable to that of the system using the ideal adaptive threshold, while maintaining simple receiver structure, In addition, low power Analog Front-End (AFE) blocks for the proposed noncoherent UWB transceiver are proposed and verified using CMOS technology. Simulation results on the pulse generator, delay time generator and 1-bit Analog-to-Digital (AID) converter show feasibility of the proposed UWB AFE system.

An 8b 200MHz Time-Interleaved Subranging ADC With a New Reference Voltage Switching Scheme (새로운 기준 전압 인가 방법을 사용하는 8b 200MHz 시간 공유 서브레인징 ADC)

  • Moon, Jung-Woong;Yang, Hee-Suk;Lee, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.4
    • /
    • pp.25-35
    • /
    • 2002
  • This work describes an 8b 200MHz time-interleaved subranging analog-to-digital converter (ADC) based on a single-poly digital CMOS process. Two fine ADCs for lower digital bits of the proposed ADC employ a time-sharing double-channel architecture to increase system speed and a new reference voltage switching scheme to reduce settling time of the reference voltages and chip area. The proposed intermeshed resistor string, which generates reference voltages for fine ADCs, improves linearity and settling time of the reference voltages simultaneously. The proposed sample- and-hold amplifier(SHA) is based on a highly linear common-drain amplifier and passive differential circuits to minimize power consumption and chip area with 8b accuracy and employs input dynamic common mode feedback circuits for high dynamic performance at a 200MHz sampling rate. A new encoding circuit in a coarse ADC simplifies the signal processing between the coarse ADC and two successive fine ADCs.

An 8b 200 MHz 0.18 um CMOS ADC with 500 MHz Input Bandwidth (500 MHz의 입력 대역폭을 갖는 8b 200 MHz 0.18 um CMOS A/D 변환기)

  • 조영재;배우진;박희원;김세원;이승훈
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.5
    • /
    • pp.312-320
    • /
    • 2003
  • This work describes an 8b 200 MHz 0.18 urn CMOS analog-to-digital converter (ADC) based on a pipelined architecture for flat panel display applications. The proposed ABC employs an improved bootstrapping technique to obtain wider input bandwidth than the sampling tate of 200 MHz. The bootstrapuing technique improves the accuracy of the input sample-and-hold amplifier (SHA) and the fast fourier transform (FFT) analysis of the SHA outputs shows the 7.2 effective number of bits with an input sinusoidal wave frequency of 500 MHz and the sampling clock of 200 MHz at a 1.7 V supply voltage. Merged-capacitor switching (MCS) technique increases the sampling rate of the ADC by reducing the number of capacitors required in conventional ADC's by 50 % and minimizes chip area simultaneously. The simulated ADC in a 0.18 um n-well single-poly quad-metal CMOS technology shows an 8b resolution and a 73 mW power dissipation at a 200 MHz sampling clock and a 1.7 V supply voltage.

Compressed Sensing and the Applications of Wireless Communications (압축 감지 기술과 무선통신 응용)

  • Hwang, Dae-Sung;Kim, Dae-Sung;Choi, Jin-Ho;Ha, Jeong-Seok
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.5
    • /
    • pp.32-39
    • /
    • 2009
  • Compressed Sensing is a method to sample analog signals at a rate under the Nyquist rate. With this scheme, it is possible to represent signals with a relatively smaller number of measurements than that of the conventional sampling method, and the original signals are reconstructed with high probability from the acquired measurements using the linear programming. Compressed sensing allows measurement time and/or the amount of ADC (analog-to-digital converter) resources for the signal acquisitions to be reduced. In this paper, we presents the backgrounds of the compressed sensing, a way to acquire measurements from an analog signal with a random basis, and the signal recovery method. Also we introduce applications of compressed sensing in wireless communications.