• Title/Summary/Keyword: salted mackerel

Search Result 43, Processing Time 0.028 seconds

The Formation of N-Nitrosamine during Storage of Salted Mackerel, Scomber japonicus (고등어 염장중 N-Nitrosamine의 생성 요인)

  • 임채영;이수정;이일숙;김정균;성낙주
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.1
    • /
    • pp.45-53
    • /
    • 1997
  • Salted mackerel(Scomber japonicus) is favorite diet in Korea from ancient times. The formation of N-nitrosamine and amines such as VBN, TMAO, TMA and DMA in salted mackerels were investigated when nitrite was added to salting water at the concentration of 0, 100, 500 and 1000mg/kg and influence of cooking method on the formation of N-nitrosamine was also analyzed. The content of VBN in mackerel during the salting increased contineously; after 50 days it was approximately more than 23.8 times as compared with that of raw sample. The TMAO nitrogen decreased while TMA increased in mackerel during the salting, the amounts of TMAO and TMA were 3.7~21.0mg/100g and 15.0~20.4mg/100g in salted mackerel, respectively. The content of DMA nitrogen increased remarkably in mackerel during the salting; DMA in sample salted for 50 days reached about 16.0 times more than that of raw sample. N-Nitrosodimethylamine (NDMA) content of control sample was detected less than 1.0$\mu\textrm{g}$/kg, but nitrite addition to salting water at 100, 500 and 1000ppm resulted in NDMA content of 8.1~14.6$\mu\textrm{g}$/kg, 24.5~45.5$\mu\textrm{g}$/kg and 53.8~77.2$\mu\textrm{g}$/kg, respectively. In contrast, cooked counterparts contained 3.3~12.6$\mu\textrm{g}$/kg of NDMA. In general, more NDMA were produced during cooking when samples cooked using direct heating methods such as a gas range and a briquet fire than when samples were cooked using indrect heating methods such as an electric range.

  • PDF

Chemical Changes of Salted Mackerel by Korean Herbal Extracts Treatment and Storage Methods (한방재료 추출물 처리와 저장방법에 따른 간고등어의 품질 변화)

  • Shin Seung-Ryeul;Hong Ju-Yeon;Nam Hak-Sik;Huh Sung-Mee;Kim Kwang-Soo
    • Food Science and Preservation
    • /
    • v.13 no.1
    • /
    • pp.18-23
    • /
    • 2006
  • This study was carried out to analyze the quality change of mackerel treated extracts of Diospyros kaki, Teuceriun veronicoides and Zanthoxylum schinifoliun during storage to develope the preparation methods for high quality of salted mackerel. The mackerel treated with Z schinifoliun extract was lowest pH change among group. Titration acidity of mackerel was increased during storage at $4^{\circ}C\;and\;25^{\circ}C$. The changes of acid value (AV) of mackerel were lower treated herbal extracts at early storage than those in control group (5.79 meq/kg) at $4^{\circ}C$. Acid values were increased in all group at $25^{\circ}C$ during storage. Peroxide value (POV) was 10 meq/kg in the salted Mackerel. Increasing of peroxide values was lower in the salted mackerel during storage. Contents of volatile basic nitrogen (VBN) were increased during storage, and were lower in group treated herb extracts than in control group. Total viable cells of mackerel were more in groups treated hem extracts at early storage than in control group, but less in groups treated herb extracts during storage than in control group.

Isolation and Identification of a Histamine-degrading Barteria from Salted Mackerel (자반고등어에서 histamine 분해능을 가진 세균의 분리 동정)

  • Hwang Su-Jung;Kim Young-Man
    • Journal of Life Science
    • /
    • v.15 no.5 s.72
    • /
    • pp.743-748
    • /
    • 2005
  • Histamine can be produced at early spoilage stage through decarboxylation of histidine in red-flesh fish by Proteus morganii, Hafnia alvei or Klebsiella pneumoniae. Allergic food poisoning is resulted from the histamine produced when the freshness of Mackerel degrades. Conversely it has been reported that there are bacteria which decompose histamine at the later stage. We isolated histamine decomposers from salted mackerel and studied the characteristics to help establish hygienic measure to prevent outbreak of salted mackerel food poisoning. All the samples were purchased through local supermarket. Histamine decomposers were isolated using restriction medium using histamine 10 species were selected. Identification of these isolates were carried out by the comparison of 16S rDNA partial sequence; as a result, we identified Pseudomonas putida strain RA2 and Halomonas marina, Uncultured Arctic sea ice bacterium clone ARKXV1/2-136, Halomonas venusta, Psychrobacter sp. HS5323, Pseudomonas putida KT2440, Rhodococcus erythropolis, Klebsiella terrigena (Raoultella terrigena), Alteromonadaceae bacterium T1, Shewanella massilia with homology of $100\%,{\;}100\%,{\;}99\%,{\;}99\%,{\;}99\%,{\;}99\%,{\;}100\%,{\;}95\%,{\;}99\%,{\;}and{\;}100\%$respectively. Turbidometry determination method and enzymic method were employed to determine the ability of histamine decomposition. Among those species Shewanella massilia showed the highest in ability of histamine decomposition. From these results we confirmed various histamine decomposer were present in salted mackerel product in the market.

The Effect of Cellophane Film Packing on Quality of Semi-Salted and Dried Mackerel during Processing and Storage (셀로판 필름보장이 반염건고등어의 가공 및 저장중의 품질에 미치는 효과)

  • 이응호;안창범;김복규;이채한;이호연
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.20 no.2
    • /
    • pp.139-147
    • /
    • 1991
  • The preservative effect of cellophane film packing on the quality of semi-salted and dried mackerel was studied. The product(P) of semi-salted and dried mackerel was prepared from raw mackerel by filleting, cleaning, soaking in 15%9v/w) salt solution for 30min, draining, packing with cellophane film (PT# 300, thickness:$20{\mu}{\textrm}{m}$) and drying for 4 hrs at $40^{\circ}C$ in hot air dryer. The product (C) was also prepared without cellophane film packing after draining. The product (C) and (P) were stored at $5.0{\pm}0.5^{\circ}C$. After processing and during storage, moisture content of product (P) was higher than that of product (C), but contents of VBN(volatile basic nitrogen), amino nitrogen and TMA of product (P) on dry basis were lower than those of product (C). Viable cell count, TBA value, peroxide value and decreasing rate of polyenoic acid of product (P) were also lower than those of product (C). In sensory evaluation, the shelf life of product (C) was about 9 days and that of product (P) was about 14 days. From the results of chemical and sensory evaluation, it was concluded that cellophane film packing was a good condition for preserving the quality of semi-salted and dried mackerel.

  • PDF

Utilization of Chitin Prepared from the Shellfish Crust 2. Effect of Chitosan Film Packing on Quality of Lightly-Salted and Dried Horse Mackerel (갑각류부산물을 이용한 키틴의 제조 및 이용에 관한 연구 2. 키토산필름포장이 반염건(半鹽乾) 전갱이의 가공 및 저장 중 품질에 미치는 효과)

  • AHN Chang-Bum;LEE Eung-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.25 no.1
    • /
    • pp.51-57
    • /
    • 1992
  • The preservative effect of chitosan film packing on quality of lightly-salted and dried horse mackerel was studied. In preparation of chitosan film, blue crab shell chitosan was dissolved in dilute acetic acid$(1.0\%,\;v/v)$, filtered, and spreaded on plastic plate and dried at $50\pm2^{\circ}C$. The chitosan film thus obtained was neutralized with 1.0N NaOH for 2 hrs and dried at room temperature after washing several times with distilled water. The lightly-salted and dried horse mackerel product was prepared by drying for 4 hrs at $40\pm2^{\circ}C$ in hot air dryer after packing with the chitosan film. During storage at $5.0\pm0.5^{\circ}C$, moisture content of the product was higher than that of the reference, but contents of VBN(volatile basic nitrogen) , amino nitrogen, and TMA of the product on dry basis were lower than those of the reference. Viable cell count, TBA value, and peroxide value of the product were also lower than those of the reference. Judging from the result of sensory evaluation, the chitosan film packing in the storage of lightly-salted and dried horse mackerel was remarkably elongated shelf-life of the product. From the results of chemical and sensory evaluation, it was concluded that chitosan film packing was an effective method for retaining the quality of lightly-salted and dried horse mackerel.

  • PDF

Changes in Contents of Amines in the Dark-fleshed Fish Meat During Processing and Storage. 2 Formation of Dimethylamine and Trimethylamine in Salted and Dried Mackerel pike and Spanish mackerel (적색육 어류의 저장 및 가공중의 Amine류의 변화 2. 꽁치$\cdot$삼치 염장 및 건제품의 DMA와 TMA 함량)

  • PARK Yeung-Ho;CHOI Su-An;ANH Cheol-Woo;YANG Yeung-Ki
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.14 no.1
    • /
    • pp.7-14
    • /
    • 1981
  • Secondary amines are known as one of the precursors of nitrosamines which are potent carcinogenic compounds for human being and animals. In this study, trimethylamine and dimethylamine contents of salted, hot-air dried and sun dried samples of two commercial fishes, mackerel pike and seerfish were analyzed and quantitatively compared at three different temperature conditions. The formation of both secondary amines was more rapid at$10^{\circ}C\;and\;15^{\circ}C\;than\;at\;2^{\circ}C$. Residual amounts of trimethylamine oxide of salted samples were relatively higher than those of the other samples. Trimethylamine contents of hot-air dried mackerel pike and sun dried seerfish were relatively higher than those in the other samples, while those of salted samples were comparatively lower than those of others. Dimethylamine contents of hot-air dried samples were higher than those of the other samples, whereas those of salted samples were comparatively lower than those of the other samples.

  • PDF

Effect of Ascorbic Acid or BHA on the Formation of Cholesterol Oxidation Products during Storage of Salted Mackerel, Scomber japonicus (고등어 염장 중 콜레스테롤 산화물의 생성에 대한 아스코르빈산 및 BHA의 영향)

  • Kim, Yoon-Sook;Lee, Il-Sook;Lee, Joo-Hee;Sung, Nak-Ju
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.2
    • /
    • pp.261-269
    • /
    • 1997
  • The autoxidation of cholesterol and lipid was investigated in mackerel during its salting for 50 days. Furthermore, the effects of antioxidants such as ascorbic acid and BHA on their autoxidation were studied. The cholesterol of mackerel during salting was continuously decreased. Its content was quantified by 23.3mg/100g in salted control sample after 50 days and that is only about 33% of total cholesterol content in fresh mackerel. The addition of BHA in mackerel during salting inhibited cholesterol oxidation more effectively than ascorbic acid.7-Ketocholesterol, unique cholesterol oxidation products was detected in this experiment and malonaldehyde, one of lipid oxidation products, contineuosly increased in control sample all the salting days by the almost same pattern but in the additive samples of ascorbic acid or BHA by different patterns, respectively. BHA was more effective antioxidant against cholesterol and lipid autoxidation than ascorbic acid.

  • PDF

Processing of Low Salt Mackerel Fillet and Quality Changes during Storage (저염 고등어 Fillet의 제조 및 저장중 품질변화)

  • Lee, Kang-Ho;Hong, Byeong-Il;Jung, Byung-Chun
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.5
    • /
    • pp.1070-1076
    • /
    • 1998
  • The processing conditions of low salt mackerel (Scomber japonicus) fillet was investigated, in which fresh mackerel was filleted, salted in brine until the expected salt concentration reached, dried with cool air (3 m/sec, $10{\sim}20^{\circ}C$), and finally packed individually in polyvinyl chloride film. Salting time and salt concentration of brine decided the final salt level penetrated into the fillet. As the final salt level was fixed to $0.8{\sim}1.0%, salting for $15{\sim}20 hours with 5% or 10% brine at $5^{\circ}C$ was enough to get that level of salt. Formation of histamine during salting was negligible. Changes in VBN, salt soluble proteins, and histamine formation of salted mackerel fillet during the storage occurred more rapidly in cases of storage at $5^{\circ}C than af $-2^{\circ}C and $-20^{\circ}C. Oxidation of lipid during the storage progressed, however it was delayed longer then 100 days in case of storage at $-20^{\circ}C. Addition of sodium erythrobate or ginger extracts could provide some extent of browning retardation. The shelf-life of the salted mackerel fillet based on panel scores of brown color and rancidity appealed to be 14 days when stored at $5^{\circ}C, and more than 28 days in case of storage at $-2^{\circ}C and about 3 months stored at $-20^{\circ}C.

  • PDF

Processing of Ready-to-Cook Food Materials with Dark Fleshed Fish 2. Processing of Ready-to-Cook Low Salt Mackerel Fillet (일시다획성 적색육어류를 이용한 중간식품소재 개발에 관한 연구 2. 저염 고등어 Fillet의 가공)

  • LEE Byeong-Ho;LEE Kang-Ho;YOU Byeong-Jin;SUH Jae-Soo;JEONG In-Hak;CHOI Byeong-Dae;JI Young-Ae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.18 no.5
    • /
    • pp.409-416
    • /
    • 1985
  • In previous paper (Lee et al., 1983) processing method of sardine meat "surimi" was described as a part of the wort to develop new types of ready-to-cook food materials with dark fleshed fishes. As the other part of the work, processing of low salt mackerel fillet was investigated, in this paper, in which fresh mackerel was filleted, salted in brine or with dry salt for an adequate time until the expected salt concentration reached, washed, air dried (3 m/sec, 15 to $20^{\circ}C$), and finally packed individually in K-flex film bag by vacuum or $N_2$ gas substitution. Salting time and salt concentration of brine was decided by the salt level penetrated into the fillet. As the final salt level was fixed to 4 to $5\%$, salting for 20 hours with $10\%$ dry salt or in $15\%$ brine at $5^{\circ}C$ was enough to get that level of salt. If the final salt level was set 5 to $6\%$, salting for 20-24 hours with $15\%$ dry salt or in $20\%$ brine was adequate. Salt penetration, however, was not much influenced by salting method and temperature. Changes in VBN and salt soluble protein occurred more rapidly in cases of salting with dry salt at $20^{\circ}C$ than salted in brine at $5^{\circ}C$, although it was not significant in the period of 20 to 24 hours. Oxidation of lipid and histamine formation during salting at $20^{\circ}C$ could not be neglected if it was delayed loger than 25 hours. Insolubilizing the salt soluble proteins during the storage of salted fillet occurred rapidly regardless of storage temperature. Browning and histamine formation, however, was depended on temperature and packing condition. In case of air pack, deterioration by browning and rancid was deeply developed but not the case for the packs by vacuum or $N_2$ gas substitution. The shelf-life of the salted mackerel fillet based on panel scores of brown color and rancidity, appeared 21 days for the air packed, and more than 30 days for vacunm or $N_2$ gas packed fillet at $20^{\circ}C$.

  • PDF

Processing of a Good Quality Salted and Semi-dried Mackerel by High Osmotic Pressure Resin Dehydration under Cold Condition (저온삼투압탈수법(低溫渗透壓脫水法)에 의한 고품질(高品質)의 반염건(半鹽乾)고등어 제조(製造))

  • Lee, Jung-Suck;Joo, Dong-Sik;Kim, Jin-Soo;Cho, Soon-Yeong;Lee, Eung-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.5
    • /
    • pp.468-474
    • /
    • 1993
  • A dehydrating sheet comprises polymeric water absorber. which are packed in a semipermeable cellophane film bag allowing selective permeation of water. This sheet dehydration is quite different from conventional drying method such as sun drying, hot-air blast drying and cold air blast drying in a sense that samples are dried without heat treatment. As a part of the studies to develope a new processing method for effective utilization of dark muscle fishes, the preparation of a good quality salted and semi-dried mackerel by the dehydrating sheet was attempted. The dehydration time for preparation of a salted and semi-dried mackerels containing approximately equal moisture content were revealed $180{\sim}510min$ in conventional drying method and $90{\sim}160min$ in this sheet dehydration, respectively. The moisture and histamine contents of those salted and semi-dried mackerels were $59.4{\sim}62.4%$ and $2.5{\sim}3.6 mg/100g$, respectively. The changes in peroxide value, fatty acid composition, brown pigment formation, myofibrillar protein solubility and Ca-ATPase activity during processing of the salted and semi-dried mackerel prepared by the sheet dehydration were more lower than those of products prepared by conventional drying methods. Therefore, these result showed that the quality of a salted and semi-dried mackerel prepared by the sheet dehydration was imperial to that of those products by conventional drying method.

  • PDF