• Title/Summary/Keyword: salt-tolerant protease

Search Result 6, Processing Time 0.019 seconds

Optimal Conditions for the Production of Salt-tolerant Protease from Aspergillus sp. 101 and Its Characteristics (Aspergillus sp. 101로부터 내염성 단백분해효소 생산을 위한 최적 조건 및 특성)

  • Hwang, Joo-Yeon;Choi, Seung-Hwa;Lee, Si-Kyung;Kim, Sang-Moo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.11
    • /
    • pp.1612-1617
    • /
    • 2009
  • Aspergillus sp. 101 was isolated from the Korean traditional soybean paste for the production of a salt-tolerant protease. The optimal condition for the production of a salt-tolerant protease was determined with various energy sources such as carbon, nitrogen, and protein, and at different culture conditions such as temperature, pH, incubation time and NaCl concentration. The most favorable organic nitrogen sources were 2% defatted soybean flour (DSF) and soy protein isolate (SPI). Optimal pH and temperature were pH 6.0 and $25{\sim}27^{\circ}C$, respectively. Therefore, Aspergillus sp. 101 protease was a mild acid (or neutral) protease. Protease production was the highest at 0.1% concentration of $CaCO_3,\;K_2HPO_4$ and Arabicgum. Aspergillus sp. 101 could grow in culture medium at 15% NaCl concentration and produce a salt-tolerant protease even at 7% NaCl. The cell mass and protease activity of Aspergillus sp. 101 cultured in a modified medium was comparatively higher in Czapek dox and protease producing media. Hence, Aspergillus sp. 101 protease can be utilized in soy or fish sauce industry as a salt-tolerant protease starter.

Gene Identification and Molecular Characterization of Solvent Stable Protease from A Moderately Haloalkaliphilic Bacterium, Geomicrobium sp. EMB2

  • Karan, Ram;Singh, Raj Kumar Mohan;Kapoor, Sanjay;Khare, S.K.
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.2
    • /
    • pp.129-135
    • /
    • 2011
  • Cloning and characterization of the gene encoding a solvent-tolerant protease from the haloalkaliphilic bacterium Geomicrobium sp. EMB2 are described. Primers designed based on the N-terminal amino acid sequence of the purified EMB2 protease helped in the amplification of a 1,505-bp open reading frame that had a coding potential of a 42.7-kDa polypeptide. The deduced EMB2 protein contained a 35.4-kDa mature protein of 311 residues, with a high proportion of acidic amino acid residues. Phylogenetic analysis placed the EMB2 gene close to a known serine protease from Bacillus clausii KSM-K16. Primary sequence analysis indicated a hydrophobic inclination of the protein; and the 3D structure modeling elucidated a relatively higher percentage of small (glycine, alanine, and valine) and borderline (serine and threonine) hydrophobic residues on its surface. The structure analysis also highlighted enrichment of acidic residues at the cost of basic residues. The study indicated that solvent and salt stabilities in Geomicrobium sp. protease may be accorded to different structural features; that is, the presence of a number of small hydrophobic amino acid residues on the surface and a higher content of acidic amino acid residues, respectively.

Purification and Characterization of a Novel Salt-tolerant Protease Produced by Saccharomyces sp. B101 Isolated from Baker's Dough Yeast

  • Hwang, Joo-Yeon;Kim, Sang-Moo;Heo, Seok;Kim, Cheon-Jei;Lee, Chi-Ho;Lee, Si-Kyung
    • Food Science and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.766-771
    • /
    • 2008
  • The proteolytic enzyme from Saccharomyces sp. B101 was purified to homogeneity by ammonium sulfate fractionation, ultrafiltration, diethyl aminoethyl (DEAE)-Sephadex A-50 ion-exchange chromatography, and Sephadex G-100 gel filtration chromatography from the culture supernatant of Saccharomyces sp. B101. The specific activity and the purification fold of the purified enzyme were 4,688.9 unit/mg and 18, respectively. The molecular weight of the purified enzyme was estimated to be 33 kDa by sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The optimum pH and temperature for the enzyme activity were pH 8.5 and $30^{\circ}C$, respectively. The enzyme activity was relatively stable in the pH range of 6.5-8.5 at below $35^{\circ}C$. The salt-tolerance and stability for the enzyme activity were relatively stable even at NaCl concentrations of 10 and 15%. The activity of enzyme was inhibited by $Ag^{2+}$ and $Fe^{2+}$, and activated by $Mn^{2+}$. In addition, the enzyme activity was potently inhibited by ethylenediaminetetraacetic acid (EDTA) and phenylmethyl sulfonylfluoride (PMSF). Based on these findings we concluded that the purified enzyme was a serine protease. Km and Vmax values for hammastein milk casein were 1.02 mg/mL and 278.38 unit/mL, respectively.

Changes in the Contents of Some Metabolites and Ions and in Some Enzyme Levels in Rice Plants Grown under Water-and Salt-stressed Condition (수분장애(水分障碍) 및 염장애(鹽障碍)하에서 수도체(水稻體)중 효소수준(酵素水準) 및 유기대사산물(有機代謝産物)과 무기(無機)이온 함량의 변화)

  • Park, Ro-Dong
    • Applied Biological Chemistry
    • /
    • v.25 no.3
    • /
    • pp.135-141
    • /
    • 1982
  • Two rice cultivars, Jinju and Iri 348, were used to compare the changes in the contents of some organic metabolites and ions and in some enzyme levels under water-and salt-stressed conditions. The water loss and proline accumulation under water and salt stresses were accelerated more in the salt-sensitive cultivar Iri 348 than in the salt-tolerant Jinju. The contents of crude protein, total free amino acids, proline and polyphenols increased under water-or salt-stressed rice, but that of reducing sugar increased under water stress only. The water-and salt-stresses induced the high ratio of low molecular organic solutes to crude protein in Jinju but not in Iri 348. The ratio of total free amino acids to crude protein increased under the stressed conditions was likely due to high protease activity. The contents of $Na^+$ and $Cl^-$ were higher in Iri 348 than in Jinju. Iri 348 had higher values of $Na^+/Ca^{2+}$ and monovalent/divalent of cations, but lower of $K^+/Na^+$ than Jinju Rice. The further studies should emphasize to set the correlations between these ratios and tolerance to water and salt stresses among rice cultivars.

  • PDF

Isolation and Identification of Halotolerant Bacillus sp. SJ-10 and Characterization of Its Extracellular Protease (세포외 Protease를 생산하는 내염성 Bacillus sp. SJ-10 균주의 분리 동정 및 효소 특성)

  • Kim, Eun-Young;Kim, Dong-Gyun;Kim, Yu-Ri;Choi, Sun-Young;Kong, In-Soo
    • Korean Journal of Microbiology
    • /
    • v.45 no.2
    • /
    • pp.193-199
    • /
    • 2009
  • A bacterium producing the halotolerant extracellular protease was isolated from squid jeotgal, and was identified as Bacillus sp. SJ-10 based on morphological, physiological and biochemical characteristics, as well as phylogenetic analysis using 16S rRNA gene sequence. The strain grew at $20^{\circ}C\sim55^{\circ}C$, pH 5~8, and 0%~14% NaCl and optimal growth conditions were $35{\pm}5^{\circ}C$, pH 7, and 5% NaCl. The major cellular fatty acids were anteiso-$C_{15:0}$, anteiso-$C_{17:0}$, and $C_{16:0}$ DNA G+C content was 50.58 mol% and menaquinone consisted of MK-7 Phylogenic analysis based on the 16S rRNA gene sequence indicated that SJ-10T belongs to the genus Bacillus. About 40 kDa of the salt-tolerant protease was purified by 40% ammonium sulfate saturation and Mono Q column chromatography. The optimal activity of the protease was pH 8 and stable at pH 5~10. The optimum temperature and NaCl concentration were $35{\pm}5^{\circ}C$ and $5{\pm}1%$, respectively.

Isolation of new microorganisms which degrades the protein of a food garbage efficiently and its application (음식물 쓰레기중의 단백질을 효과적으로 분해하는 신규 미생물의 분리 및 응용)

  • Koo Kyung-Wan;Chung Yong-Hyun;Hong Sung-Hee;Oh Sang-Hoon;Kim Dong-seop;Jeon Hee-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.4
    • /
    • pp.342-348
    • /
    • 2005
  • In this study, novel strains showing better protein degradation activity were isolated for the production of effective compost from garbages. Well growing bacteria with clear zone on the skim milk agar media were isolated . The strain was identified as Bacillus subtilis PNV-1 through various biochemical tests, Bergy's manual of determinative bacteriology and 165 rDNA partial sequence. The extracellular protease of the strain PNV-1 has its activity at broad pH and the optimal temperature was $50^{\circ}C$. Also, the strain PNV-1 was highly tolerant to high concentration of salt, red/black pepper and mustard.

  • PDF