• 제목/요약/키워드: salt sensitive

검색결과 171건 처리시간 0.028초

Effect of seawater on growth of four vegetable crops - Lettuce, leaf perilla, red pepper, cucumber -

  • Lee, Sang-Beom;Lee, M.H.;Lee, B.M.;Nam, H.S.;Kang, C.K.
    • 한국유기농업학회지
    • /
    • 제19권spc호
    • /
    • pp.222-224
    • /
    • 2011
  • The effects of seawater on growth of lettuce(Lactuca sativa L.), leaf perilla(Perilla frutescens var. japonica Hara), red pepper(Capsicum annuum L.) and cucumber(Cucumis sativus L.) seedlings were investigated in the glass greenhouse. These effects were studied on seedlings, and diluted seawater (1%, 5%, 10%, 20%, 50%, 100% v/v) was sprayed enough on leaves. The tested four vegetable crops have well grown up to 10% diluted seawater, but the tested vegetable crops were damaged from increasing salt levels. Of these, lettuce was provided salt-tolerant vegetable crop and red pepper was considered salt-sensitive vegetable crop. The salt tolerance of vegetable crops is different between crops and complicated because of additional detrimental effects caused by accumulated ions or specific ion toxicities in their leaves. These results show that agricultural use of seawater may be benefit crop cultivation in organic farming system as well as in conventional farming system.

Physiological Relevance of Salt Environment for in vitro recA System

  • Kim, Jong-Il
    • Journal of Microbiology
    • /
    • 제37권2호
    • /
    • pp.59-65
    • /
    • 1999
  • RecA protein can promote strand assimilation, homologous pairing, and strand exchange. All these reactions require DNA-dependent ATP hydrolysis by recA protein, and the activities of recA protein are affected by the ionic environment. In this experiment, DNA-dependent ATPase activity showed different sensitivity to anionic species. ATP hydrolysis and strand exchange were relatively sensitive to salt in the reactions with NaCl, strongly inhibited at 100 mM NaCl. However, the inhibition by sodium acetate or sodium glutamate was not observed at 50∼100 mM concentration. Addition of sodium glutamate to the standard reaction condition increased the apparent efficiency of ATP hydrolysis during strand exchange. The condition including 50∼100 mM sodium-glutamate might be similar to the physiological condition.

  • PDF

급격한 온도 변화에 따른 리튬 이온 배터리의 전해질 내 염 농도 분포 특성 (Characteristics of Salt Concentration in Electrolyte of Lithium Ion Battery According to Sudden Temperature Change)

  • 장경민;김광선
    • 반도체디스플레이기술학회지
    • /
    • 제16권1호
    • /
    • pp.11-15
    • /
    • 2017
  • Lithium-ion batteries are widely used, from lightweight to energy-intensive, from small devices to large ESSs. However, it is sensitive to the surrounding environment and there is a change in performance depending on the temperature change. In this study, the temperature dependence of the charge / discharge characteristics of the battery is shown through simulation and the distribution of the salt concentration in the electrolyte is observed when the sudden temperature change is applied.

  • PDF

수도의 염해와 대책 (Salt Injury and Overcoming Strategy of Rice)

  • 이승택
    • 한국작물학회지
    • /
    • 제34권s02호
    • /
    • pp.66-80
    • /
    • 1989
  • Salt injury in rice is caused mainly by the salinity in soil and in the irrigated water, and occasionaly by salinity delivered through typhoon from the sea. The salt concentration of rice plants increased with higher salinity in the soil of the rice growing. The climatic conditions, high temperature and solar radiation and dry conditions promote the salt absorption of rice plant in saline soil. The higher salt accumulation in the rice plant generally reduces the root activity and inhibits the absorption of minerals of rice plant, resulting the reduction of photosynthesis. The salt damages of rice plant, however, are different from different growth stage of rice plants as follows: 1. Germination of rice seed was slightly delayed up to 1.0% of salt concentration and remarkably at 1. 5%, but none of rice seeds were germinated at 2.5%. This may be due to the delayed water uptake of rice seeds and the inhibition of enzyme activity, 2. It was enable to establish rice seedlings at seed bed by 0.2% of salt concentration with some reduction of leaf elongation. The increasing of 0.3% salt concentration caused to the seedling death with varietal differences, but most of seedlings were death at 0.4% with no varietal differences. 3. Seedlings grown at the nursery over 0.1% salt, gradually reduced in rooting activity after transplanting according to increasing the salt concentration from 0.1% up to 0.3% of paddy field. However, the seedlings grown in normal seed bed showed no difference in rooting between varieties up to 0.1% but significantly different at 0.3% between varieties, but greatly reduced at 0.5% and died at last in paddy after transplanting. 4. At panicle initiation stage, rice plant delayed in heading by salt damage, at meiotic stage reduced in grains and its filling rate due to inhibition of glume and pollen developing, and salt damage at heading stage and till 3 weeks after heading caused to reduction of fertilization and ripening rate. In viewpoint of agricultural policy the overcoming strategy for salt injury is to secure sufficient water source. Irrigation and drainage systems as well as underground drainage is necessary to desalinize more effectively. This must be the most effective and positive way except cost. By cultural practice, growing the salt tolerant variety with high population could increase yield. The intermittent irrigation and fresh water flooding especially at transplanting and from panicle initiation to heading stage, the most sensitive to salt injury, is important to reduce the salt content in saline soil. During the off-cropping season, plough and rotavation with flooding followed by drainage, or submersion and drainage with groove could improve the desalinization. Increase of nitrogen fertilizer with more split application, and soil improvement by lime, organic matter and forign soil addition, could increase the rice yield. Shift of trans-planting is one of the way to escape from the salt injury.

  • PDF

수분 및 Salt Stress조건하에서 대맥품종의 발아력과 출현력의 차이 (Barley Varietal Differences in Germination and Emergence Capacity under Different Water and Salt Stress Conditions)

  • 천종은;이은섭;정동희;정태영
    • 한국작물학회지
    • /
    • 제28권1호
    • /
    • pp.122-127
    • /
    • 1983
  • 본 시험은 수분 및 Salt stress 조건에서 우리나라 대맥 주요육성 품종 및 계통들의 발아력과 출현력의 품종간 차이를 구명하고자 Sucrose와 KC1 용액을 사용하여 실시하였던 바 그 결과를 요약하면 다음과 같다. 1. 수분 Stress에서 발아력의 품종간 변이는 -10 - -15bars에서 매우 컸으며 부흥, 밀양 006, 부호 보리 등이 양호하였다. 2. Salt stress에서 출현력의 품종간 변이는 약 -9bars에서 매우 컸으며 SB77415 - B -37, 조강보리, 동보리 001 등이 양호하였으며 초엽장, 유묘장과 정의 상관이 인정되었다. 3. 수분 Potential이 낮아짐에 따라 종자의 발아, 출현시기가 지연될 뿐 아니라 비율도 낮아져 초기입모가 불량하였다. 4. 수분 Stress에서 발아력과 Salt stress에서 출현력의 관계는 높은 정의 상관이 인정되었으며, 본 시험결과는 두 방법의 병용가능성과 품종간 차이를 구명하기 위해선 낮은 Potential(-9 bars)에서 실시해야 함을 제시해준다.

  • PDF

4차 염화 가교화된 4-vinylpyridine 공중합체들을 사용한 습도센서의 감습 특성 (Humidity Sensitive Properties of Humidity Sensor Using Quaternized Cross-linked Copolymers of 4-Vinylpyridine)

  • 공명선;이성수;이임렬
    • 한국전기전자재료학회논문지
    • /
    • 제14권4호
    • /
    • pp.302-308
    • /
    • 2001
  • The polymers with various composition of 4-vinylpyridine (4-VP) with n-butyl acrylate (n-BA) and 2-hydroxypropyl methacrylate (HPMA) were synthesized as a humidity sensitive material and quaternized with 1.5-dibromopentane. Resistance versus relative humidity decreased with increase in the content of n-BA in the copolymer. The introduction of HPMA increased the resistance of the humidity sensor as well as enhanced the adherence to the alumina substrate. In the case of 4-VP/n-BA/HPMA=80/10.10, the hysteresis and temperature coefficient were $\pm$2%RH and -0.42∼0.46%RH/$\^{C}$. The average resistance at 30%RH, 60%RH and 90%RH are 3.1㏁, 155 ㏀ and 7.9 ㏀, respectively.

  • PDF

DNA Sequence Variation of Candidate Gene for Salt Tolerance in Soybean Mutant

  • Chang Yeok Moon;Byeong Hee Kang;Woon Ji Kim;Sreeparna Chowdhury;Sehee Kang;Seo Young Shin;Wonho Lee;Hyeon-Seok Lee;Bo-Keun Ha
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2022년도 추계학술대회
    • /
    • pp.259-259
    • /
    • 2022
  • Soil salinity is a major factor that reduces crop yields. The amount of soil affected by salinity is about 83 million hectares (FAO 2000), which is increasing due to the effects of climate change. In soybean [Glycine max (L.) Merr.], nutritional properties such as protein, starch, and sucrose content together with biomass and yield tends to reduce due to excessive salt. As a result of QTL mapping using the 169 F2:3 population from the KA-1285 (salt-tolerant) × Daepung (salt-sensitive) in a previous study, two major QTLs (Gm03_39796778 and Gm03_40600088) related to salt tolerance were found on chromosome 3. In this study, the CDS region of the Gmsalt3 gene was analyzed using the ABI 3730x1 DNA Analyzer (Macrogen, Korea). The sequence of Gmsalt3 gene in KA-1285 was compared with Williams 82.a4.vl and PI483463 (Glycine soja). Two transversions were found at exon6 in KA-1285 and PI483463. Currently, whole genome sequencing and variation analysis using the Illumine Novaseq 6000 machine (Illumina, USA) are in progress. The results of this study can provide useful molecular markers for the selection of salt-tolerant soybeans and can be used as basic data for future salt-tolerant gene research.

  • PDF

Analytical Model of Salt Budget in the Upper Indian River Lagoon, Florida USA

  • Kim, Young-Taeg
    • Ocean and Polar Research
    • /
    • 제26권1호
    • /
    • pp.33-42
    • /
    • 2004
  • Effect of freshwater discharge on the long-term salt balance in the Northern and Central Indian River Lagoon (IRL) is successfully simulated by a new analytical solution to a water balance-based one-dimensional salt conservation equation. Sensitivity tests show that the salinity levels drop abruptly even during the dry season (November to May) due to the high surface runoff discharge caused by tropical storms, depressions, and passage of cold fronts. Increasing surface runoff and direct precipitation has risen by ten times, lowering the salinity level down to 12psu in the Northern Central zone, and to 17 psu in the Northern zone. However, the salinity level in the Southern Central zone has decreased to 25 psu. High sensitivity of the Northern Central zone to freshwater discharge can be partially explained by a rapid urbanization in this zone. During the dry season, less sensitivity of the Southern Central zone to the increased surface runoff is attributed to the proximity of the zone to the Sebastian Inlet and a strong diffusion condition possibly resulting from the seawater intrusion to the surficial aquifer at the Vero Beach. During the wet season, however, the whole study area is highly sensitive to freshwater discharge due to the weak diffusion conditions. High sensitivity of the IRL to the given diffusion conditions guarantees that the fresh-water release occurs during strong wind conditions, achieving both flood control in the drainage basin and a proper salinity regime in the IRL.

Phenotypic and genotypic screening of rice accessions for salt tolerance

  • Reddy, Inja Naga Bheema Lingeswar;Kim, Sung-Mi;Yoon, In Sun;Kim, Beom-Gi;Kwon, Taek-Ryoun
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.188-188
    • /
    • 2017
  • Rice (Oryza sativa L.) is one of the major crops that is seriously impacted by global soil salinization. Rice is among those crops where most of the high-yielding cultivars are highly sensitive to salinity. The key to a plant survival under NaCl salt stress is by maintaining a high $K^+/Na^+$ ratio in its cells. Selection for salinity tolerance genotypes of rice based on phenotypic performance alone is less reliable and will delay in progress in breeding. Recent advent of molecular markers, microsatellites or simple sequence repeats (SSRs) were used to find out salt tolerant rice genotypes. In the current experiment phenotyping and genotyping studies were correlated to differentiate different rice accessions for salinity tolerance. Eight rice accessions along with check plant Dongjin were screened by physiological studies using Yoshida solution with 50mM NaCl stress condition. The physiology studies identified four tolerant and four susceptible accessions based on their potassium concentration, sodium concentration, $K^+/Na^+$ ratio and biomass. 17 SSR markers were used to evaluate these rice accessions for salt tolerance out of which five molecular markers were able to discriminate tolerant accessions from the susceptible accessions. Banding pattern of the accessions was scored comparing to the banding pattern of Dongjin. The study identifies accessions based on their association of $K^+/Na^+$ ratio with molecular markers which is very reliable. These markers identified can play a significant role in screening large set of rice accessions for salt tolerance; these markers can be utilized to improve salt tolerance of commercial rice varieties with marker-assisted selection (MAS) approach.

  • PDF

Development of efficient protocol for screening of rice genotypes using physiological traits for salt tolerance

  • Kim, Sung-Mi;Reddy, Inja Naga Bheema Lingeswar;Yoon, In Sun;Kim, Beom-Gi;Kwon, Taek-Ryoun
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.189-189
    • /
    • 2017
  • Salinity is one of the major abiotic stresses that severely affect crop production throughout the world; especially rice plant which is generally categorized as a typical glycophyte as it cannot grow in the presence of salinity. Phenotypic resistance of salinity is expressed as the ability to survive and grow in a salinity condition. Salinity resistance has, at least implicitly, been treated as a single trait. Physiological studies of rice suggest that a range of characteristics (such as low shoot sodium concentration, compartmentation of salt in older rather than younger leaves, high potassium concentration, high $K^+/Na^+$ ratio, high biomass and plant vigour) would increase the ability of the plant to cope with salinity. Criteria for evaluating and screening salinity tolerance in crop plants vary depending on the level and duration of salt stress and the plant developmental stage. Plant growth responses to salinity vary with plant life cycle; critical stages sensitive to salinity are germination, seedling establishment and flowering. We have established a standard protocol to evaluate large rice germplasms for overall performance based on specific physiological traits for salt tolerance at seedling stage. This protocol will help in identifying germplasms which can perform better in the presence of different salinity treatments based on single trait and also combination of different physiological traits. The salt tolerant germplasm can be taken forward into developing better varieties by conventional breeding and exploring genes for salt tolerance.

  • PDF