• 제목/요약/키워드: salt farm

검색결과 46건 처리시간 0.029초

염전 병행 태양광 발전의 실증과 시뮬레이션 (Salt Farm Parallel Solar Power System:Field tests and Simulations)

  • 박종성;김봉석;김근호;이승민;임철현
    • Current Photovoltaic Research
    • /
    • 제7권4호
    • /
    • pp.121-124
    • /
    • 2019
  • In this research, the concept of a salt farm parallel solar power system, which produce salt and electricity at the same site, is proposed for the first time in the world. The concept is that large waterproof plates made by interconnected solar modules are installed at the bottom of the salt farm. The pilot system was successfully installed at a sea shore, and verified its feasibility as a solar power plant. For deeper understanding, simulations for power prediction of the system were carried out and compared with the field test results. The power generation of the salt farm parallel system is comparable to conventional solar power plants. The cooling effect by sea water contributes more to the increase in the crystalline silicon photovoltaic module performance than the absorption loss due to sea water by maintaining certain height above the module.

Reuse of Sodium Sulfate Recovered from Farm Drainage Salt as Dyeing Builder of Levelling Dyes - Analysis of Color Difference -

  • Jung, Jiyoon
    • The International Journal of Costume Culture
    • /
    • 제6권1호
    • /
    • pp.11-18
    • /
    • 2003
  • Agricultural drainage salt generated during irrigation of crops in San Joaquin Valley, California, exceeds 600,000 tons annually and cumulates in the field in a rapid rate. As a result, the waste is taking out more farmlands for salt storage and disposal, imposing serious concerns to environment and local agricultural industry. In searching for a potential solution to reduce or eliminate the waste, this research explored feasibility of producing a value-added product, sodium sulfate, from the waste and utilizing the product in textile dyeing. The results indicated that sodium sulfate could be produced from the salt and could be purified by a recrystallization method in a temperature range within the highest and lowest daily temperatures in summer in the valley. The recovered sodium sulfate samples, with purities ranging from 67% to 99.91, were compared with commercially available sodium sulfate in the dyeing of levelling dyes. In nylon fabrics, the salt samples had little color difference in the dyeing with C.I. Acid Yellow 23 and C.I. Acid Blue 158. All salt samples' gray scale was 5 grade. In wool fabrics, the salt samples had little color difference in dyeing with C.I. Acid Yellow 23 and C.I. Arid Blue 158. All salt samples' gray scale was 5 grade. Generally, the dyeing of levelling dyes using recovered salts from farm drainage had little color difference than the dyeing of levelling dyes using commercial sodium sulfate.

  • PDF

염전 병행 태양광 발전 시스템 타당성 검토를 위한 기초연구 (Feasibility Study of Salt Farm and Solar Power Paraell System)

  • 강성현;김봉석;김근호;박종성;김덕성;임철현
    • Current Photovoltaic Research
    • /
    • 제9권1호
    • /
    • pp.17-21
    • /
    • 2021
  • In this study, the effect of water level and temperature on the power generation was investigated in a water tank with an aquavoltaic PV module to perform feasibility research for the development of salt farm aquavoltaic system. The silicon solar cell attached to the bottom of each water tank is a 1-cell mini module, and the underwater effects of the crystal phase (19.0~19.9% of single- & 17.9~19.9% of poly-crystalline) of the PV module were investigated, and power generation characteristics for water level (0~10 cm) and temperature (10~40℃) were analyzed. The deterioration coefficients according to the water level and temperature of each single- and poly-crystalline module were investigated at very similar levels such as, -2.01 %/cm and -2.02 %/cm, -0.50 %/℃ and -0.48 %/℃, respectively. Therefore, in salt farm aquavoltaic system, water levels need to maintain as low as possible, and heat-induced degradation is similar to those shown in general land, and no factors have been found to be affected by the underwater environment depending on the determination.

위성영상의 신경망 분류에 의한 평안남도 온천군 해안지역의 환경 변화 연구 (A Study on the Environmental Changes of Coastal Area in Oncheon Gun of Pyeongnam Province by Neural Network Classification Using Satellite Images, West Coast of North Korea)

  • 이민부;김남신;이광률;한욱
    • 한국지역지리학회지
    • /
    • 제11권2호
    • /
    • pp.278-290
    • /
    • 2005
  • 본 논문은 1988년 Landsat TM 영상과 2002년 ETM 영상의 신경망 분류법을 이용하여 북한 서해안 평남 온천군 해안지역의 지형 및 환경변화, 토지이용의 변화과정을 추정한 것이다. 연구지역 내에서도 변화가 특히 심한 광량만과 서부지역은 해상도 60cm의 Quick Bird 영상을 통해 정밀한 지표 변화 과정을 분석하였다. 여기서 사용된 인공신경망 기법은 역전파 알고리즘을 적용하여 보다 높은 분류 등급과 분석 오차의 감소 등 개선된 지표 피복 변화를 가능하게 하였다. 1988년 TM영상과 2002년 ETM 영상의 비교에 의한 측정 변화의 결과를 보면, 1988년 건설 중이던 광량만 방조제가 2002년에는 완성된 상태였다. 그리고 1988년의 간척지는 주로 염전으로 많이 이용되었으나, 2002년에는 염전과 함께 안정화된 간척지, 염전에서 전향된 논농사 지역이 많이 나타났다. 또한 두드러진 변화는 간척된 염전이나 방조제 외곽에 새로운 간석지 지형이 형성되고 있다는 점이다. 이상의 연구 결과는 북한 해안환경 변화의 database화, 북한의 합리적이고도 생산성 있는 토지이용에 대한 협력방안 강구, 통일 후 국토관리 및 계획 등에 활용될 수 있을 것으로 기대된다.

  • PDF

미국 캘리포니아 San Joaquin Valley 농업관개수에서 회수한 Sodium Sulfate의 균염성 염료 조제로의 재활용 (Reuse of Sodium Sulfate Recovered from Farm Drainage Salt of San Joaquin Valley in California, U.S.A. as Dyeing Builder of Levelling Dyes)

  • 정지윤
    • 복식문화연구
    • /
    • 제11권3호
    • /
    • pp.416-422
    • /
    • 2003
  • Agricultural drainage salt generated during irrigation of crops in San Joaquin Valley, California, exceeds 600,000 tons annually and cumulates in the field in a rapid rate. As a result, the waste is taking out more farmlands for salt storage and disposal, imposing serious concerns to environment and local agricultural industry. In searching for a potential solution to reduce or eliminate the waste, this research explored feasibility of producing a value-added product, sodium sulfate, from the waste and utilizing the product in textile dyeing. The results indicated that sodium sulfate could be produced from the salt and could be purified by a recrystalization method in a temperature range within the highest and lowest daily temperatures in summer in the valley. The recovered sodium sulfate samples, with purities ranging from 67% to 99.91, were compared with commercially available sodium sulfate in the dyeing of levelling dyes with nylon/wool fabrics. In nylon/wool fabrics, C.I. Acid Yellow 23 had similar exhaustions among Na₂SO₄ I, Na₂SO₄ II, Na₂SO₄ III and Na₂SO₄ Ⅴ which had similar ratios of sodium sulfate and sodium chloride in recovered salts. Na₂SO₄ Ⅳ had low exhaustion which had low ratios of sodium sulfate and sodium chloride. In nylon/wool fabrics, C.I. Acid Blue 158 had similar exhaustions among Na₂SO₄ I, Na₂SO₄ II, Na2₂SO₄ III, Na₂SO₄ IV and Na₂SO₄ Ⅴ despite of Na₂SO₄ Ⅳ had low ratios of sodium sulfate and sodium chloride Generally, the dyeing of levelling dyes using recovered salts from farm drainage has similar or low exhaustion than the dyeing of levelling dyes using commercial sodium sulfate.

  • PDF

염전 폐간수의 재활용(I) : 마그네슘 회수 (Recycling of Waste Bittern from Salt Farm (I) : Recovery of Magnesium)

  • 나춘기;박현주
    • 공업화학
    • /
    • 제27권4호
    • /
    • pp.427-432
    • /
    • 2016
  • 본 연구의 목적은 마그네슘 생산을 위한 원료 물질로서 폐간수의 활용 가능성을 검토하는 것이다. 본 연구에서는 간수에 NaOH를 첨가하여 Mg 이온을 수산화마그네슘($Mg(OH)_2$)으로 회수하는 침전법을 적용하였다. 간수에 용존되어 있는 Mg 이온은 NaOH 첨가량이 [NaOH]/[Mg] 몰비 2.70~2.75, pH 9.5~10.0에서 99% 이상이 제거되었다. 알칼리제로 첨가하는 NaOH 용액의 몰 농도는 Mg의 회수효율에 큰 영향을 미치지 않은 것으로 나타났다. 침전반응을 통해 생성되는 $Mg(OH)_2$의 입도는 주로 알칼리제의 첨가속도에 의해 영향을 받았으며 첨가속도가 느릴수록 증가하였다. 침전반응을 통해 간수 1 L당 100~120 kg의 $Mg(OH)_2$ (순도 약 94%)을 회수할 수 있었다. 이러한 실험결과들은 천일염 산업의 부산물인 간수가 해수마그네시아 생산을 위한 유용자원으로 활용될 수 있음을 알 수 있었다.

Recovery of Sodium Sulfate from Farm Dyainage Salt and Using It in Directive Dyeing of Cotton

  • Jiyoon Jung;Kwon, Ghi-Young
    • The International Journal of Costume Culture
    • /
    • 제4권2호
    • /
    • pp.86-93
    • /
    • 2001
  • Agricultural drainage salt generated during irrigation of crops in San Joaquin Valley, California exceeds 600,000 tons annually and cumulates in the field in a rapid rate. As a result, the waste is taking out more farmlands for salt storage and disposal, imposing serious concerns to environment and local agricultural industry. in searching for a potential solution to reduce or eliminate the waste, this research explored feasibility of producing a value-added product, sodium sulfate, from the waste and utilizing the product in textile dyeing. The result indicated that sodium sulfate could be produced the salt and could be purified by a recrystalization method in a temperature range within the highest and lowest daily temperatures in summer in the valley. Re recovered sodium sulfate samples, with purifies ranging from 67% to 99.91, were compard with commercially available sodium sulfate in directive dyeing of cotton fabrics. Direct Yellow 27 and direct Blue 1 had similar exhaustions among Na₂So₄Ⅰ, Na₂So₄Ⅱ, Na₂So₄Ⅲ and V which had similar ratios of sodium sulfate and sodium chloride in recovered salts. Na₂So₄Ⅳ had high exhaustion despite low ratios of sodium sulfate and sodium chloride. In direct Red 80, exhaustion depends more on the ratios of sodium sulfate and sodium chloride than sodium chloride. Na₂SO₄Ⅳ and Na₂SO₄V with high ratios of sodium chloride had more exhaustion than Na₂So₄and Na₂So₄Ⅲ with low ratios of sodium chloride. Generally, directive dyeing using recovered salts from farm drainage has similar or more excellent exhaustion than directive dyeing using commercial sodium sulfate.

  • PDF

Recovery of Sodium Sulfate from Farm Drainage Salt and Using It in Direct Dyeing of Cotton - Analysis of Color Difference -

  • Jiyoon Jung
    • The International Journal of Costume Culture
    • /
    • 제4권1호
    • /
    • pp.18-24
    • /
    • 2001
  • Agricultural drainage salt generated during irrigation of crops in San Joaquin Valley, California, exceeds 600,000 tons annually and cumulates in the field in a rapid rate. As a result, the waste is taking out more farmlands for salt storage and disposal, imposing serious concerns to environment and local agricultural industry. In searching for a potential solution to reduce or eliminate the waste, this research explored feasibility of producing a value -added product, sodium sulfate, from the waste and utilizing the product in textile dyeing. The results indicated that sodium sulfate could be produced from the salt and could be purified by a recrystalization method in a temperature range within the highest and lowest daily temperatures in summer in the alley. The recovered sodium sulfate samples, with purities ranging from 67% to 99.91, were compared with commercially available sodium sulfate in direct dyeing of cotton fabrics. The salt samples recovered from Mendata, California (〉98.8% sodium sulfate) cause little color difference in the dyeing with selected direct dyes, and the purified salt (Ⅲ) (99.91% sodium sulfate) is more applicable for direct dyeing of cotton fabrics if it has no other toxic effects. The recovered sodium sulfate from certain areas in the valley could not be employed in direct dyeing due to the high level of impurities in it.

  • PDF

Disinfection of various materials with 3-(trimethoxysilyl)-propyldimethyloctadecyl ammonium chloride in hatchery facilities

  • Kim, Yu-Jin;Kim, Jun-Beom;Song, Chang-Seon;Nahm, Sang-Soep
    • Animal Bioscience
    • /
    • 제35권4호
    • /
    • pp.631-637
    • /
    • 2022
  • Objective: Surface disinfection is important in the proper running of livestock farms. However, disinfection of farm equipment and facilities is difficult because they are made of different materials, besides having large surface areas and complex structures. 3-(trimethoxysilyl)-propyldimethyloctadecyl ammonium chloride (Si-QAC) is a quaternary ammonium salt-based disinfectant that attaches to various surfaces by forming covalent bonds and maintains its disinfecting capacity for a considerable time. Our aim was to evaluate the potential use of Si-QAC for disinfection of farm equipment and facilities. Methods: The short- and long-term antimicrobial and antiviral effects of Si-QAC were evaluated in both laboratory and farm settings using modified quantitative assessment method based on the standard operating procedures of the United States Environmental Protection Agency. Results: Si-QAC was highly effective in controlling the growth of the Newcastle disease virus and avian pathogenic Escherichia coli. Electron microscopy revealed that the mechanism underlying the disinfection activity of Si-QAC was associated with its ability to damage the outer membrane of the pathogen cells. In the field test, Si-QAC effectively reduced viral contamination of surfaces of equipment and space. Conclusion: Our results suggest that Si-QAC has great potential as an effective chemical for disinfecting farm equipment and facilities. This disinfectant could retain its disinfection ability longer than other commercial disinfectants and contribute to better farm biosecurity.