• Title/Summary/Keyword: salt damage

Search Result 276, Processing Time 0.024 seconds

Evaluation of the Coating Liquid Sprayed on Landscape Plants to Prevent De-icing Stresses - Focus on Chlorophyll Fluorescence Analysis - (조경수목의 제설제 피해저감을 위한 엽면코팅제 처리효과 분석 - 엽록소 형광분석법을 중심으로 -)

  • Kwon, Hee-Bum;Kim, Tae-Jin
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.35 no.6
    • /
    • pp.29-36
    • /
    • 2008
  • This study examined the de-icing agents' stresses on Pinus strobus and Pinus thunbergii by chlorophyll fluorescence analysis. The assumption of this study was that photosynthetic efficiency was changed by de-icing agents applied onto highways in winter by altering the concentration of the de-icier, types of de-icer and leaf surface coating liquid application. The practical purpose of this study was to investigate the de-icing gents stresses on Pinus strobus by the highway area where de-icing agents were used frequently and to discover out minimizing stratages to prevent further damages. or this simulation study, a sample plot was established in Bogae-myeon, Anseong, Gyeonggi-do and Pinus strobus and Pinus thunbergii were planted for the examination in April, 2005. Five types of de-icing agents - NaCl, $CaCl_2$, T product(NS40:low cWoride de-icer type), NaCl+$CaCl_2$ and T product+$CaCl_2$ - were selected and the their concentration was altered to 0%, 5%, and 9%. Five types of de-icing agents were applied to both trees treated by a leaf surface coating liquid and trees not treated by leaf surface coating liquid. For the fluorescence analysis, the leaf surface coating liquid, which was diluted by 10 times, was sprkinkled onto the two tree species three days prior to gathering samples. Sample leaves from the two tree species were gathered at 10 o'clock in the morning of mid-August, 2006 and brought to the laboratory within three hours to be dipped in different concentrations (0%, 5%, or 9%) of the five de-icing agents for two minutes. Then the eaves were placed on the filter paper dipped in each solution on a petri dish, sealed with polyethylene film and kept in a growth chamber at $22^{\circ}C$ for 72 hours. Out of the growth chamber, the leaves were treated with a chorophyll fluorescence reaction analyzer for 30 minutes to measure the initial light acceptance rate(Fo), maximum light acceptance ate(Fv/Fm), light acceptance usage(F' q/F' m) and optical electron delivery coefficient(qP). As a result, Pinus strobus' initial light acceptance rate(Fo) decreased as T product and NaCl increased in concentration, and $Cal_2$ did not reduce much with the eaf surface coating liquid application. Maximum light acceptance rate(Fv/Fm) and light acceptance usage(F' q/F' m) decreased sharply as T product and NaCl increased in concentration and NaCl+$CaCl_2$ and T product+$CaCl_2$ did not reduce much with leaf surface coating liquid application. Optical electrons delivery coefficient (qP) decreased as T product increased in concentration on trees without the leaf surface coating liquid application and all other de-icing agents did not show much reduction. As for Pinus thunbergii, the initial light acceptance rate(Fo) decreased as T product increased in concentration, but the maximum light acceptance rate(Fv/Fm) was not reduced much by changes in concentration. light acceptance usage(F' q/F' m) decreased as NaCl increased in concentration and optical electron delivery coefficient(qP) decreased as NaCl increased in concentration in both with and without leaf surface coating liquid application. In conclusion, it was possible to plant Pinus strobus if spraying leaf surface coating liquid or cleaning deicing salt to prevent the damage caused by deicing agents was more economical than replacing the trees. If not, it was better to plant Pinus thunbergii. Another way to decrease the deicing gents stresses of landscape plants would be planting the trees further away from the roads even though it might take longer period to display its planting functions.

Influences of Addition of Jellyfish Powder to Bed Soil and Bacterial Community Structure of Bed Soil (해파리 분말의 상토 첨가물로서의 효과 및 상토의 미생물 군집 변화에 대한 연구)

  • Beck, Bo-Ram;Choi, Jae-Ho;Kim, Young-Rok;Cha, Ha-Eun;Do, Hyung-Ki;Hwang, Cher-Won
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.2
    • /
    • pp.227-234
    • /
    • 2012
  • Recently, the population of toxic and/or unusable jellyfish is increasing during summer along the east coast of Korea, causing massive economical and ecological damage to fisheries, nuclear power plant and marine environment. To solve this problem, this study was carried out using jellyfish as a potential soil additive for horticulture. The jellyfish was solidified and homogenized, then mixed with a commercial bed soil. Allium tuberosum ROTH was planted to control bed soil (BS) and jellyfish powder mixed bed soil groups (Mixed bed soil, MBS), and following parameters were measured during five weeks: water content, electrical conductivity and growth of leaves. At the end of the experiment, bacterial community structures of each pot were analyzed by DGGE. The relative water adsorption of jellyfish powder was about 2.5 times greater compared to its dry weight. The water content of MBS group was significantly higher than BS group 6.5 to 14.2%, and the electric conductivity of MBS group was measured around 2.8 dS/m where BS group was resulted average of 1.8 dS/m. However, the leaves of BS group were grown 30% longer compared to MBS group. DGGE analysis of MBS group was shown in high number of phylum Bacteroidetes and increased diversity of Sphingobacteriia compared to BS group. Jellyfish powder as a soil additive surely will be a good candidate as humectant and microbiota stimulator, although there are several obstacles such as high electrical conductivity and residual alum salt which used for solidification of jellyfish.

Evaluation on the Performance of Surface Performance Improving Agent for the Deterioration Prevention of Concrete Structures (콘크리트 구조물의 열화방지를 위한 표면 성능 개선제의 성능 평가)

  • Ryu, Gum-Sung;Koh, Kyoung-Taek;Kim, Do-Gyeum;Lee, Jang-Hwa
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.4
    • /
    • pp.177-186
    • /
    • 2005
  • The latest concrete structure has showed that the deterioration of durability has been increased by the damage from salt, carbonization, freezing & thawing and the others. Therefore, the measures for the concrete which has deteriorated durability have been taken. Among them, it has been often used that surface treatment which cuts off the deterioration factors of durability by protecting the surface of concrete. However, troubles such as fracture and rupture in the repair layer have been reported as time goes by due to the difference between the organic repair material like epoxy and concrete properties. Researchers have been developing the repair material which can cut off the deterioration factors of durability such as $CO_2$ gas, chloride ion and water by making the formation of concrete elaborate through the reaction with calcium ion when the surface improving agent is coated on the concrete. The main ingredient of that is inorganic substance which is the same as the concrete property. This study was evaluated the surface improving agent for permeability, watertightness, air-permeability, chemical resistance and elution resistance. As a result, it has been reported that the surface improving agent improves watertightness and air-permeability by penetration more than 10mm within concrete. Therefore, it is concluded that the surface improving agent developed in this research prevents deterioration of concrete durability when it is coated on the concrete structure.

A Study on Quality Improvement for the Prevention of Water Infiltration and Corrosion of Helicopter MRA Control-Rod (회전익 항공기 MRA 조종로드 방수 및 부식 방지에 관한 연구)

  • Lim, Hyun-Gyu;Choi, Jae-hyung;Kim, Dae-Han;Jang, Min-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.9
    • /
    • pp.92-100
    • /
    • 2017
  • The Helicopter MRA Control Rod System has the important function of controlling the speed, height, and direction of helicoptersby adjusting the main rotor disc. However, the ingress of water into the inner control rod can cause ice damage in the rod during winter operation and also corrosion;these defects need to be rectified. The water flowed into the control rod through the upper side space, and the rod was cracked during icing expansion occurring at low temperature. The corrosion occurred due to the lack of coating process during the manufacturing process. To resolve these problems, the upper rod was sealed to prevent water inflow and a coating process was added to prevent corrosion. These solutions were verified by awaterproof test and a salt fog test. The phenomena, causes and measures were reviewed and the methods of improvement were established and proven. This proposed technology to prevent water infiltration and corrosion will contribute to the safety of rotary wing aircraft.

Analysis of the Causes of Deformation of Packaging Materials Used for Ready-to-Eat Foods after Microwave Heating (즉석편의 식품용 포장재의 전자레인지 가열에 의한 변형 원인 분석)

  • Yoon, Chan Suk;Hong, Seung In;Cho, Ah Reum;Lee, Hwa Shin;Park, Hyun Woo;Lee, Keun Taik
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.1
    • /
    • pp.63-69
    • /
    • 2015
  • The aim of this study was to investigate the deformation of packaging materials used for ready-to-eat (RTE) foods after the retort process and microwave heating. From the multilayer films consisting of polyethylene terephthalate (PET), polyamide (PA), and cast polypropylene (CPP) in a stand-up pouch form used for RTE foods, some deformation of the CPP layer, which was in direct contact with the food, was observed after the retort process and microwave heating. The damage was more severely caused by microwave heating than by the retort process. This may be attributed to diverse factors including the non-uniform heating in a microwave oven, the sorption of oil into the packaging film, and the different characteristics of food components such as viscosity, salt and water content. The development of heat-resistant packaging materials and systems suitable for microwave heating of RTE foods is required for the safety of consumers.

Landscape Design of Gamcheon Wholesale Fish Market (감천항 수산물 도매시장 조경설계)

  • 권영휴;민권식;황용득
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.30 no.2
    • /
    • pp.70-78
    • /
    • 2002
  • The landscape disign of Gamcheon wholesale fish Market was designed around a turnkey base to promote the economy of Busan Metropolitan City, to establish a fishery marketing center and to modernize existing facilities. The objectives of the project were to promote the mood of an old market, while preserving its functions and efficiency as a market, to design outdoor spaces with natural resources and amenities in balance, and to create attractive tourist spots in connection with the wide area development plan. The project was oriented, fast, to enhance the functions of the market. For this purpose, a multi-dimensional space layout was designed in consideration of functions as a wholesale market. The safety of pedestrians was secured by separating lathes for vehicles and for pedestrians. Tree planting with various functions such as sheltering, wind breaking and guiding was planned. Secondly, nature-friendly and human-friendly landscaping design was attempted. For this, the beautiful natural resources of Amnam Park were utilized, and green spaces such as green bridges linking buildings in the wholesale market, and rooftop gardens were to be arranged. In addition, environment-friendly facilities such as roads paved with natural materials(i.e. gravel, shells) and program parking lots were to be planned. Thirdly, landscape design was considered to create attractive tourist spots. For example, a fish farm was created as a theme street for pedestrians and various water-friendly spaces such as pedestrian ramps, observatories and seaside streets were to be secured. The main contents are as follows. First, a green bridge to Ahnnam Park was introduced for a tour source and flower garden, an event plan and viewing deck open to the sea were planned on the bridge's axis. Secondly, for the effective land use plan concerning open space and convenience to visitors, a promenade was planned, which is connected with the theme plaza and small plazas by environmental sculptures in front of the market hall and at the gate. As well, an observatory and a roof garden help create three dimensional multi leveled space, with a good view of the natural landscape of the sea, sky and park Thirdly, landscape materials, such as trees and those for facilities, strengthened for protection against the seawind and salt damage were selected. The commercial market area was intended to be transformed a traditional functional area of efficiency and economy into an attractive marine leisure area where both tourists and neighbors can make use of it.

Evaluation on Chloride Binding Capacity of Mineral Mixed Paste Containing an Alkaline Activator (알칼리 활성화제를 사용한 무기질 혼합 페이스트의 염화물이온 고정화 평가)

  • Cho, Gyu-Hwan;Yeo, In-Hwan;Ji, Dong-Hun
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.2
    • /
    • pp.157-165
    • /
    • 2016
  • It is possible to achieve high strength ranging from 40 MPa to 70 MPa in alkali-activated slag concrete (AASC), and AASC is also known to have a finer pore structure due to its high latent hydraulicity and fineness of slag cement, which makes it difficult for chloride ions to penetrate. Electrophoresis is mostly used to calculate the effective diffusion coefficient of chloride ions, and then to evaluate resistance to salt damage. Few studies have been conducted on the fixation capacity of chloride ions in AASC. For this reason, in this study the chloride fixation within the hardened paste was evaluated according to the type and the amount of alkaline activators. As a result, it was revealed that among the test specimens, the chloride fixation was greatest in the paste containing $Na_2SiO_3$. In addition, it was found that as more activator was added, a higher level of chloride fixation was observed. Through this analysis, it can be concluded that the type and the amount of alkaline activators have a high correlation with the amount of C-S-H produced.

Deterioration Assessment and Structural‐Reinforcement of Stone Lantern of the Four Guardian Kings in Beopjusa Temple, Boeun (보은 법주사 사천왕석등의 비파괴 훼손도 평가 및 구조보강)

  • Choie, Myoungju;Lee, Myeong Seong;Jun, Yu Gun;Lee, Mi Hye;Kim, Yuri;Ha, Jun Kyeong
    • Journal of Conservation Science
    • /
    • v.33 no.1
    • /
    • pp.25-33
    • /
    • 2017
  • The stone lantern of the four guardian kings in the Beopjusa temple at Boeun was mainly made of biotite granodiorite consisting of porphyritic-textured potassium feldspar and included in ilmenite series. A base stone made of alkali granite was buried, after founded its place during an earlier restoration process. Cracking and break out are noticeable on this object. In addition, discoloration, salt crusting, and epiphytes were observed. The lantern was vulnerable in terms of physical and structural stability caused by cracking in the front and back of the light chamber and in the non-horizontal direction. According to the conservational condition of the stone lantern, structural reinforcement was carried out based on calculations, including those on the position, size, and anchor length of the titanium stiffener. Chemical and biological pollutants were washed off without damage to the surface of the stone material. Oxygenated iron pieces were replaced with titanium. Ethyl silicate was applied to the surface of the lantern for consolidation and smooth drainage.

Durability of concrete using sulfur-modified polymer (개질유황 폴리머를 사용한 콘크리트의 내구성 평가)

  • Hong, Chang Woo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.5
    • /
    • pp.205-211
    • /
    • 2015
  • Most of the sulfur is obtained from desulfurization of natural gas and crude oil. In Korea, more than 120 tons of sulfur are produced by refinery, and about 50 % of the produced sulfur is used as a raw material for the production of fertilizer and sulfuric acid. Modified sulfur is manufactured from excessive sulfur that could be used to improve concrete properties, and this study evaluated concrete strength and durability that contains modified sulfur. Flexural and compressive strengths of concrete with sulfur modified polymer were comparable to those of OPC concrete with mixing water at similar temperatures, while the strengths increased a little as mixing water temperature increased. It was also confirmed that the resistance to freeze-thaw damage was more dependent on entrained air characteristics obtained by a proper use of air entraining agent than on the use of sulfur modified polymer. When concrete was immersed in 5 % sulfuric acid, the rate of reduction in compressive strength of OPC concrete was less than 1/4 of the strength reduction of concrete with sulfur modified polymer. Also, the resistance of concrete with sulfur modified polymer to scaling due to the use of de-icing salt was evaluated as Class 1, while that of OPC concrete was evaluated as Class 4, as aggregates were exposed. Accordingly, it is believed that sulfur modified polymer could be effectively used for bridge deck concrete since sulfur modified polymer improves the durability of concrete.

Development for Penetrative Performance Improving Agent to In Prevent Deterioration of Concrete Structures (콘크리트 구조물의 내구성능 저하를 방지하는 침투형 성능개선제 개발)

  • Ryu Gum-Sung;Koh Kyoung-Taek;Kim Sung-Wook;Kim Do-Gyeum
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.4 s.88
    • /
    • pp.489-498
    • /
    • 2005
  • Recently, the deterioration of concrete structures have been increased by the damage from salt, carbonization, freezing & thawing and the others. Therefore, the measures for the deterioration of concretes have been taken. Among them, it has been often used that surface treatment which cut off the deterioration factors of durability by protecting the surface of concrete. The water proof and repair materials for concrete mainly use organic materials such as epoxy, these materials excel in intial bonding force and resistance to chemical agents. But they cause difference in the modulus of elasticity and the rate of shrinkage and expansion of concrete, and thus result in such problems as scaling and spatting in the progress of time. Therefore in this study it develop the performance Improving agent of concrete surface that can block a deterioration cause such as $CO_2$ gas, chloride ion and water from the outside and enhance waterproofing ability by reinforcing the concrete surface when applying it to concrete structures.