• Title/Summary/Keyword: salt concentrations

Search Result 708, Processing Time 0.024 seconds

Growth characteristics of halophytes and forage crops under salt concentrations

  • Jeong, Jae-Hyeok;Hwang, Woon-Ha;An, Sung-Hyun;Jeong, Han-Yong;Lee, Hyeon-Seok;Baek, Jung-Sun;Choi, Kyung-Jin;Lee, Geon-Hwi;Chung, Nam-Jin;Yun, Song Joong
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.355-355
    • /
    • 2017
  • South Korea is largely dependent on imports of forage crops. In order to raise the self-sufficiency rate of forage crops, it is necessary to cultivate forage crops in 135,100 ha reclaimed land of South Korea. This study was conducted to investigate the growth of halophytes and forage crops in order to search for stable plants on reclaimed land. The plants were cultured in Hoagland solution and grown at 0%, 0.5%, 1.0% and 2.0% of salt concentrations. Plants with good growth at 0.5% of salt concentration were halophytes such as Suaeda asparagoides and Salsola komarovii. Salicornia herbacea and Suaeda maritima showed good growth at 2.0% salinity, and Suaeda maritima showed stable growth at all of salt concentrations. In conclusion, Suaeda asparagoides showed the best growth at 0.5% of salt concentration and was considered the most biomass at reclaimed land in Korea with less than 0.5% of salt concentration.

  • PDF

Corrosion of Containment Alloys in Molten Salt Reactors and the Prospect of Online Monitoring

  • Hartmann, Thomas;Paviet, Patricia
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.1
    • /
    • pp.43-63
    • /
    • 2022
  • The aim of this review is to communicate some essential knowledge of the underlying mechanism of the corrosion of structural containment alloys during molten salt reactor operation in the context of prospective online monitoring in future MSR installations. The formation of metal halide species and the progression of their concentration in the molten salt do reflect containment corrosion, tracing the depletion of alloying metals at the alloy salt interface will assure safe conditions during reactor operation. Even though the progress of alloying metal halides concentrations in the molten salt do strongly understate actual corrosion rates, their prospective 1st order kinetics followed by near-linearly increase is attributed to homogeneous matrix corrosion. The service life of the structural containment alloy is derived from homogeneous matrix corrosion and near-surface void formation but less so from intergranular cracking (IGC) and pitting corrosion. Online monitoring of corrosion species is of particular interest for molten chloride systems since besides the expected formation of chromium chloride species CrCl2 and CrCl3, other metal chloride species such as FeCl2, FeCl3, MoCl2, MnCl2 and NiCl2 will form, depending on the selected structural alloy. The metal chloride concentrations should follow, after an incubation period of about 10,000 hours, a linear projection with a positive slope and a steady increase of < 1 ppm per day. During the incubation period, metal concentration show 1st order kinetics and increasing linearly with time1/2. Ideally, a linear increase reflects homogeneous matrix corrosion, while a sharp increase in the metal chloride concentration could set a warning flag for potential material failure within the projected service life, e.g. as result of intergranular cracking or pitting corrosion. Continuous monitoring of metal chloride concentrations can therefore provide direct information about the mechanism of the ongoing corrosion scenario and offer valuable information for a timely warning of prospective material failure.

Olefin Separation Performances and Coordination Behaviors of Facilitated Transport Membranes Based on Poly(styrene-b-isoprene-b-styrene)/Silver Salt Complexes

  • Lee, Dong-Hoon;Kang, Yong-Soo;Kim, Jong-Hak
    • Macromolecular Research
    • /
    • v.17 no.2
    • /
    • pp.104-109
    • /
    • 2009
  • Solid-state facilitated, olefin transport membranes were prepared by complexation of poly(styrene-b-iso-prene-b-styrene) (SIS) block copolymer and silver salt. Facilitated olefin transport was not observed up to a silver mole fraction of 0.14, representing a threshold concentration, above which transport increased almost linearly with increasing silver salt concentration. This was because firstly the silver ions were selectively coordinated with the C=C bonds of PI blocks up to a silver mole fraction of 0.20, and secondly the coordinative interaction of the silver ions with the aliphatic C=C bond was stronger than that with the aromatic C=C bond, as confirmed by FT-Raman spectroscopy. Small angle X-ray scattering (SAXS) analysis showed that the cylindrical morphology of the neat SIS block copolymer was changed to a disordered structure at low silver concentrations ($0.01{\sim}0.02$). However, at intermediate silver concentrations ($0.15{\sim}0.20$), disordered-ordered structural changes occurred and finally returned to a disordered structure again at higher silver concentrations (>0.33). These results demonstrated that the facilitated olefin transport of SIS/silver salt complex membrancs was significantly affected by their coordinative interactions and nano-structural morphology.

Impact of salt stress on the α-tocopherol, carotenoid derivatives and flocculation efficiency of Euglena sp., Indonesian Strain

  • Ria Amelia;Arief Budiman;Andhika Puspito Nugroho;Eko Agus Suyono
    • Fisheries and Aquatic Sciences
    • /
    • v.27 no.6
    • /
    • pp.379-391
    • /
    • 2024
  • Tocopherol, carotenoids, and chlorophyll are the primary components of the antioxidative response in microalgae. Conditions of stress, such salt stress, can trigger the processes responsible for the accumulation of tocopherol and carotene. It has been found that the most difficult part of culturing microalgae is keeping it affordable. This study investigated the effects of different salt types and concentrations on the amount of α-tocopherol, carotenoid derivatives, and flocculation efficiency of Euglena sp. Cultures of Euglena sp. was developed under salt stress conditions of NaCl 200 mM and KCl 200 mM. UV-VIS spectrophotometry was used to confirm the presence of α-tocopherol and carotenoid derivatives under thirteen days of salt stress testing. Increasing salinity has a significant effect on Euglena sp., causing spherical cell morphologies with aspect ratio 1.385 ± 0.031 for NaCl 200 mM and 1.414 ± 0.040 for KCl 200 mM. Increasing salinity also slowing down development with specific growth rate value of 0.171 ± 0.006 per day and 0.122 ± 0.029 per day for NaCl and KCl 200 mM, respectively. Nevertheless, the amount of α-tocopherol in Euglena sp. increases with a high salt concentration; algal cells flocculated more successfully when increasing the salt concentrations (NaCl 200 mM and KCl 200 mM) was added. Due to the inhibition of photosynthetic activity in salt-stressed cells, the control group exhibited higher levels of carotenoid derivatives (ranging from 0.5-1 ㎍/mL) and pheophytin a and b (0.0062 ± 0.001 ㎍/mL and 0.0064 ± 0.001 ㎍/mL) than the group treated with salt stress. In conclusion, salt stress was an effective way to raises the concentration of α-tocopherol and significantly reduce the expense of harvesting Euglena sp.

Distribution of Zirconium Between Salt And Bismuth During A Separation From Rare Earth Elements By A Reductive Extraction

  • S. W. Kwon;Lee, B. J.;B. G. Ahn;Kim, E. H.;J. H. Yoo
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.02a
    • /
    • pp.165-169
    • /
    • 2004
  • It was studied on the reductive extraction between the eutectic salt and Bi metal phases. The solutes were zirconium and the rare earth elements, where zirconium was used as the surrogate for the transuranic(TRU) elements. All the experiments were performed in a glove box filled with argon gas. Two types of experimental conditions were used -high and low initial solute concentrations in salt. Li-Bi alloy was used as a reducing agent to reduce the high chemical activity of Li. The reductive extraction characteristics were examined using ICP, XRD and EPMA analysis. Zirconium was successfully separated from the rare earth elements by the reductive extraction method. The LiF-NaF-KF system was favorable among the fluoride salt systems, whereas the LiCl-KCl system was favorable among the chloride salt systems. When the solute concentrations were high, intermetallic compounds were found near the salt-metal interface.

  • PDF

Effect of Saline Concentrations on Biological Nitrification in Batch Reactor

  • Lee, Young Joon;Nguyen, Viet Hoang;Nguyen, Hong Khanh;Pham, Tuan Linh;Kim, Gi Youn
    • Journal of Integrative Natural Science
    • /
    • v.4 no.2
    • /
    • pp.103-112
    • /
    • 2011
  • This study was carried out on 4 batch reactors to determine the specific ammonium oxidizing rate (SAOR), specific nitrate forming rate (SNFR) and inhibitory degree of nitrifying activities with saline concentrations. Under salt free condition ammonia was consumed during the reaction period within 200 min. When the salt level increased to 10, 20 and 30 g $NaClL^{-1}$ in reactor, ammonia depletion took 250, 300 and above 350 min, respectively. During concentration above 10 g $NaClL^{-1}$, there was nitrite accumulation. Also, at 30 g $NaClL^{-1}$ ammonia did not depleted and $NO_2{^-}$-N accumulated until the final reaction. Nitrate formation rates decreased with increasing salt concentration. SAOR and SNFR showed a decreasing trend as salinity concentrations were increased. The SAOR was reduced from 0.2 to 0.08 mg $NH_4{^+}$-N $g^{-1}VSS\;day^{-1}$ as the salt concentration increased from 0 to 30 g $NaClL^{-1}$. Similarly, the SNFR decreased from 0.26 kg $NO_3{^-}$-N $kg^{-1}VSS\;day^{-1}$ at saline free to 0.1 kg $NO_3{^-}$-N $kg^{-1}VSS\;day^{-1}$ at saline 30 g L-1. A severe inhibition of nitrifiers activity was observed at increased salt concentrations. The inhibition ratio of specific ammonium oxidation rates were 17, 47 and 60% on the reactor of 10, 20 and 30 g $NaClL^{-1}$ added, respectively. The inhibition ratio of specific nitrate forming rates also were inhibited 30, 53 and 62% on the reactor of 10, 20 and 30 g $NaClL^{-1}$ added, respectively. As the salinity concentrations increased from 0 to 30 mg $NaClL^{-1}$, the average MLSS concentration increased from 1,245 to 1,735 $mgL^{-1}$. The SS concentration of supernatant in reactor which settled about 30 minutes was not severely difference between concentration of salt free reactor and one of those high salt contained reactors.

Characterization cf salted Chinese cabbage in relation to salt content, temperature and time (배추절임시 염수농도와 침지온도 및 시간에 따른 특성 변화)

  • 심영현;안기정;유창희
    • Korean journal of food and cookery science
    • /
    • v.19 no.2
    • /
    • pp.210-215
    • /
    • 2003
  • When Kimchi is cooked, it is very import to find an appropriate level for the salt content of the cabbage to makes the best tasting Kimchi. Therefore, in this article, attempts were made to find the best salted cabbage condition using difference salt solution concentration, temperatures and fermentation periods. In the experiments with the difference of the salt solutions, 10 and 15%, the salted cabbages were packed in polyethylene bags, and incubated at 10, 15, 20 and 25$^{\circ}C$ for 0, 2, 4, 6, 8, 10, 12, 14, 16 and 20 hrs. As a result, the best tasting Kimchi, in terms of texture characteristic, were found with storage times of 10 and 6-8 hrs, with salt solution concentrations of 10 and 15%, respectively, both of these at 25$^{\circ}C$. The best conditions, in terms of the kimchi taste characteristics, where 6-10 hrs, with the salt solution concentrations of 10 & 15%. With storage conditions of 10 hrs and a salt solution concentraction of 10%, and 6-8 hrs and a salt solution concentration of 15%, both at 25$^{\circ}C$, the texture characteristics were fresh. clear and coot. Also, the points of the appropriate salt content differ with temperature. Therefore, the appropriate conditions for the salting time, storage temperature and salt solution concentrations will make the best tasting, most nutritious Kimchi, in the least time and most economically.

Effect of Salt Concentration and Turbidity on the Inactivation of Artemia sp. in Electrolysis UV, Electrolysis+UV Processes (해수의 염 농도와 탁도가 전기, UV 및 전기+UV 공정의 Artemia sp. 불활성화에 미치는 영향)

  • Kim, Dong-Seng;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.28 no.3
    • /
    • pp.291-301
    • /
    • 2019
  • This study was conducted to investigate the effect of salt concentration and turbidity on the inactivation of Artemia sp. by electrolysis, UV photolysis, electrolysis+UV process to treat ballast water in the presence of brackish water or muddy water caused by rainfall. The inactivation at different salt concentrations (30 g/L and 3 g/L) and turbidity levels (0, 156, 779 NTU) was compared. A decrease in salt concentration reduced RNO (OH radical generation index) degradation and TRO (Total Residual Oxidant) production, indicating that a longer electrolysis time is required to achieve a 100% inactivation rate in electrolysis process. In the UV process, the higher turbidity results in lower UV transmittance and lower inactivation efficiency of Artemia sp. Higher the turbidity resulted in lower ultraviolet transmittance in the UV process and lower inactivation efficiency of Artemia sp. A UV exposure time of over 30 seconds was required for 100% inactivation. Factors affecting inactivation efficiency of Artemia sp. in low salt concentration are in the order: electrolysis+UV > electrolysis > UV process. In the case of electrolysis+UV process, TRO is lower than the electrolysis process, but RNO is more decomposed, indicating that the OH radical has a greater effect on the inactivation effect. In low salt concentrations and high turbidity conditions, factors affecting Artemia sp. inactivation were in the order electrolysis > electrolysis+UV > UV process. When the salt concentration is low and the turbidity is high, the electrolysis process is affected by the salt concentration and the UV process is affected by turbidity. Therefore, the synergy due to the combination of the electrolysis process and the UV process was small, and the inactivation was lower than that of the single electrolysis process only affected by the salt concentration.

Effect of Salt on Mitotic Cycle in Root Meristem Cells of Rice (벼 세포적기에 미치는 염분 농도의 영향)

  • 김재철;권성환;이진재;이영일
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.37 no.5
    • /
    • pp.397-404
    • /
    • 1992
  • The mitotic cycle duration(MCD) and component phase periods of rice(Oryza sativa L.) root meristem cells on the different salt concentrations were investigated by using of tritiated thymidine. The time interval between the maxima of sequential mitotic appearances of marked cells was used as criteria in measuring the MCD of rice. The MCD of rice cultivars 'Seomjinbyeo and Chilseongbyeo' at 0.0%, 0.3%, and 0.6% of salt concentrations appeared the same period as 12hr. The durations of component phase of rice cultivar 'Seomjinbyeo' were the almost same periods at 0.1%, 0.3%, and 0.6% of salt, but in 'Chilseongbyeo' cultivar the G1 and G2 periods were shorter while the S period was longer at 0.3% and 0.6% of salt. Deoxyribonucleic acid(DNA) and protein synthesis were increased while ribonucleic acid(RNA) synthesis was decreased with increasing salt concentrations at Chilseombyeo roots. In Seomjinbyeo roots, DNA and RNA synthesis were decreased while protein synthesis was increased with increasing salt concentrations. These results suggest that DNA, RNA, and protein synthesis may not affect the MCD in rice, but the increase of protein synthesis may be related to the salt tolerance of rice.

  • PDF

Effects of Salt Treatment on Seed Germination and Plant Growth of Korean Native Apocynum lancifolium Russanov

  • Kim, Jo-Hoon;Park, Ye-Gun;Ann, Seoung-won;Baik, Jung-Ae;Park, Dong-Jin
    • Journal of Environmental Science International
    • /
    • v.30 no.11
    • /
    • pp.957-965
    • /
    • 2021
  • This research was carried out to investigate seed germination and growth of the perennial plant Apocynum lancifolium under different NaCl concentrations, with a view for future cultivation on reclaimed land. Initial characterization revealed that the average length and weight of A. lancifolium seed pods was 133.6 mm and 0.23 g, respectively, and the thousand-grain weight was 0.59 g. Upon examining the effects of light on seed germination, we found germination to be 1.7% higher under light conditions (90%) than under dark conditions (88.3%). In terms of the response to salt stress, we found that 90% of seeds germinated in the 0.00%, 0.25%, and 0.50% salt treatment groups. Although salt treatment up to a concentration of 0.5% was found to have little effect on seed germination, the rate of germination decreased at higher concentrations and was completely inhibited in the 2% treatment. We also established that germination rates were higher in seeds sown in horticultural topsoil than in the coarse sandy soil found in the plant's natural habitats. Although the growth of A. lancifolium tends to decrease with an increase in salt concentration, we found that the stem thickness, fresh weight, and dry weight of A. lancifolium seedlings subjected to 0.25%-1.0% salt were comparable to those of the control seedling that were not exposed to salt. Furthermore, in contrast to those plants subjected to 2.0% salt, these plants continued to grow and remained viable.