• Title/Summary/Keyword: salinity effect

Search Result 539, Processing Time 0.028 seconds

Effect of Salinity on Settling Velocities of Cohesive Sediments (점착성 퇴적물의 침강속도에 미치는 염도의 영향)

  • Hwang, Byoung-Ho;Hong, Sung-Woo;Hwang, Kyu-Nam
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1813-1817
    • /
    • 2008
  • 유체의 특성을 나타내는 인자 중에 침강속도에 큰 영향을 미치는 인자 중 하나는 염도(salinity)이다. 염도는 부유사 입자의 응집을 촉진시키고, 입자의 응집은 더욱 큰 침강속도를 초래하는 것으로 알려지고 있다. 본 연구에서는 유체의 염도가 침강특성에 미치는 영향을 파악하기 위하여 서로 다른 염도조건(담수와 염수)에서 고령토 퇴적물에 대한 침강실험을 수행하고, 그 결과를 비교 분석하여 염도가 침강특성에 미치는 영향을 정성적 정량적으로 해석하였다.

  • PDF

Changes in Methane Production in Coastal Mud Flat under Different Temperature and Salinity (온도 증가와 염도 감소에 따른 갯벌토양에서 메탄발생량의 변화)

  • Kim, Young Joo;Jung, Soo Hyun;Kang, Ho jeong
    • Journal of Wetlands Research
    • /
    • v.8 no.4
    • /
    • pp.41-47
    • /
    • 2006
  • Global climatic changes are expected to influence various biogeochemical processes in wetland ecosystems. In particular, coastal mud flat is anticipated to be affected directly by temperature increase as well as indirectly by a sea level rise and changes in precipitation. This study aimed to determine changes in methane production under different temperature and salinity by employing a laboratory-scale manipulation experiment. Soil samples were collected from a mud flat in Dong-Gum Kang-Hwa island in winter and two types of experiments were conducted. In the first experiment soil samples at 0-5 cm, 5-10 cm depth were incubated under same salinity with pore water and diluted salinity to 50 % of natural condition for 20 days and methane production was measured every other days. In the second experiment, soil samples at 5-10 cm depth were incubated in different temperature, $5^{\circ}C$ and $15^{\circ}C$, under same salinity conditions with first experiment for 31 days and methane production was measured. Results of the first experiment revealed that higher amount of methane was produced at 5-10 cm depth, and salinity effect was predominant at the end of the experiment. The second experiment showed that methane production was higher in $15^{\circ}C$ than $5^{\circ}C$. In addition, methane production was higher when sea water diluted to 50 % compared to control. Global climatic changes are expected to influence various biogeochemical processes in wetland ecosystems. In particular, coastal mud flat is anticipated to be affected directly by temperature increase as well as indirectly by a sea level rise and changes in precipitation. This study aimed to determine changes in methane production under different temperature and salinity by employing a laboratory-scale manipulation experiment. Soil samples were collected from a mud flat in Dong-Gum Kang-Hwa island in winter and two types of experiments were conducted. In the first experiment soil samples at 0-5 cm, 5-10 cm depth were incubated under same salinity with pore water and diluted salinity to 50 % of natural condition for 20 days and methane production was measured every other days. In the second experiment, soil samples at 5-10 cm depth were incubated in different temperature, $5^{\circ}C$ and $15^{\circ}C$, under same salinity conditions with first experiment for 31 days and methane production was measured. Results of the first experiment revealed that higher amount of methane was produced at 5-10 cm depth, and salinity effect was predominant at the end of the experiment. The second experiment showed that methane production was higher in $15^{\circ}C$ than $5^{\circ}C$. In addition, methane production was higher when sea water diluted to 50 % compared to control. These results suggest that methane production is highly influenced by changes in temperature and salinity in coastal mud flat. And that global climatic change may induce biological feedback by affecting production of another greenhouse gas, namely methane from coastal mud flat.

  • PDF

Effect of Salinity, Temperature and Carbon Source on the Growth and Development of Sclerotia of Sclerotinia sclerotiorum Isolated from Semi-arid Environment

  • Abdullah, Mansour T.;Ali, Nida Y.;Suleman, Patrice
    • The Plant Pathology Journal
    • /
    • v.24 no.4
    • /
    • pp.407-416
    • /
    • 2008
  • Studies were conducted to determine the effects of temperature, solute potential and carbon source on the mycelial growth, sclerotia development, and apothecium production of an isolate of Sclerotinia sclerotiorum. Mycelial growth rate was greatest at $25^{\circ}C$ on potato dextrose agar (PDA) medium amended with up to 2% NaCl (${\psi}s{\leq}1.91\;MPa$) and thereafter, growth rate declined. The least number of sclerotia were produced at $20^{\circ}C$on both PDA and malt extract agar (MEA) amended with 8% NaCl (${\psi}s=6.62\;MPa$). With increasing temperature and decreasing solute potential the number and size of sclerotia were significantly reduced. The combined effect of temperature, solute potential and carbon source on sclerotia production were highly significant and had an impact on the development of the rind layer cells of sclerotia. These cells lacked a transparent cell wall which was surrounded by a compact melanized layer, and some of these cells appeared to be devoid of cell contents or were totally vacuolated. The survival of the sclerotia with increase in salinity and temperature appeared to affect melanization and the nature of the rind cells. The observations of this study re-enforces the need for an integrated disease management to control S. sclerotiorum.

A Study on the Microflora of the Han River I. The Phytoplanktons and the Effect of the Marine Water in the Lower Course of the Han River (한강의 Microflora에 관한 연구 제1보 : 한강하류의 식물성 plankton과 해수의 영향)

  • 정영호
    • Journal of Plant Biology
    • /
    • v.8 no.4
    • /
    • pp.7-25
    • /
    • 1965
  • In order to clearify the microflora of the lower course of the Han River and the effect of the marine water on the Han River, the study was carried out at Paldang, Kwangjang, Noryangjin, and Haengju for 4 months (from May till September in 1965). The results obtained are as follows: 1) Water temperature, transparency, light intensity, pH, silicate, and salinity were determined as environmental conditions. 2) Samples collected from 4 stations were identified and classified by Engler's classification system. It resulted in 4 Phyla, 3 Classes, 13 Orders, 25 Families, 61 Genera, 155 Species, and 16 Varieties. The total numbers of phytoplanktons identified are 171. Of the number, 106 species and 12 varieties were recorded in this paper for the first time. 3) A comparative observation on the distribution of marine phytoplanktons and salinity in the Han River showed a fact that the Han River was biologically affected in the middle portion between Noryangjin and Haengju by marine water. Furthermore, the salinity determined at Haengjuduring a day(at high tide, September 26, 1995) supported the above fact. 4) Four species among the identified species are saprobic planktons and it is regarded as the forms derived from Chunggyechon.

  • PDF

Proline Accumulation in Vigna angularis Seedlings Under Salt Stress

  • Lee, Hee-Kyung;Hong, Jung-Hee
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.4 no.1
    • /
    • pp.51-57
    • /
    • 2000
  • Changes in the proline accumulation of ten-day-old seedlings of Vigna angularis in response to NaCl treatment were monitored. The proline content increased gradually both with an increase in the exposure time to salt stress and in a concentration-dependent manner. The increased proline accumulation was stronger in the shoots than in the roots. The salt stress by itself resulted in a significant inhibition of the chlorophyll content. Pre-treatment with proline before salinization lasting 48 h did not significantly affect the endogenous proline level in the roots, in contrast, a considerable increase of proline was observed in the shoots. The application of exogenous proline to the seedlings increased the endogenous proline content and improved the root and shoot growth under saline conditions. Detached leaves also exhibited an increased proline level in response to the applied NaCl, however, at a lower magnitude than in the intact seedlings. The proline alleviated the inhibitory effect of the NaCl in a concentration-dependent manner, thereby suggesting that salinity is a strong inducer of proline accumulation. In addition, abscisic acid eliminated the inhibitory effect of the salt salinity, thereby indicating a protective role on salinity stress and a regulatory role in proline synthesis. Accordingly, it would appear that proline may be involved in salt tolerance.

  • PDF

Influence of NaCl on the Growth and Metabolism of Halomonas salina

  • YUN , SU-HEE;SANG , BYUNG-IN;PARK, DOO-HYUN
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.118-124
    • /
    • 2005
  • In this research, we examined the effect of NaCl on the growth, energy metabolism, and proton motive force of Halomonas salina, and the effect of compatible solutes on the bacterium growing in the high salinity environment. H. salina was isolated from seawater and identified by 16srDNA sequencing. The growth of H. salina was not enhanced by the addition of external compatible solutes (choline and betaine) in the high salinity environment. The resting cells of H. salina absorbed more glucose in the presence of 2.0 M NaCl than in its absence. H. salina did not grow in the medium with either KCl, RbCl, CsCl, $Na_2SO_4$, or $NaNO_3$, in place of NaCl. The optimal concentration of NaCl for the growth of H. salina ranged from 1.4 M to 2.5 M, and the growth yield was decreased in the presence of NaCl below 1.4M and above 2.5M. The activity of isocitrate dehydrogenase, pyruvate dehydrogenase, and malate dehydrogenase of H. salina was not inhibited by NaCl in in vitro test. The proton translocation of H. salina was detected in the presence of NaCl only. These results indicate that NaCl is absolutely required for the normal growth and energy metabolism of H. salina, but the bacterial growth is not enhanced by the compatible solutes added to the growth medium.

Numerical study of CO2 hydrate dissolution rates in the ocean: Effect of pressure, temperature, and salinity

  • Kyung, Daeseung;Ji, Sukwon;Lee, Woojin
    • Advances in environmental research
    • /
    • v.4 no.1
    • /
    • pp.17-24
    • /
    • 2015
  • In this study, we numerically investigated the effect of pressure (100-250 bar), temperature (274-288 K), and salinity (3.5% w/w electrolytes) on $CO_2$ hydrate dissolution rates in the ocean. Mass transfer equations and $CO_2$ solubility data were used to estimate the $CO_2$ hydrate dissolution rates. The higher pressure and lower temperature significantly reduced the $CO_2$ hydrate dissolution rates due to the increase of $CO_2$ particle density. In the high salinity condition, the rates of $CO_2$ hydrate dissolution were decreased compared to pure water control. This is due to decrease of $CO_2$ solubility in surrounding water, thus reducing the mass transfer of $CO_2$ from the hydrate particle to $CO_2$ under-saturated water. The results obtained from this study could provide fundamental knowledge to slow down or prevent the $CO_2$ hydrate dissolution for long-term stable $CO_2$ storage in the ocean as a form of $CO_2$ hydrate.

Effects of Light, Desiccation and Salinity for the Spore Discharge of Gracilaria verrucosa (Rhodophyta) in Korea

  • Kim Young Sik;Choi Han Gil;Nam Ki Wan
    • Fisheries and Aquatic Sciences
    • /
    • v.4 no.4
    • /
    • pp.257-260
    • /
    • 2001
  • The effects of light, desiccation and salinity on the discharge of spores in Korean agarophyte, Gracilaria verrucosa were studied. Among the examined factors, light after darkness was the most effective for spore discharge. The maximum release of tetraspores was induced at 24 h after the treatment. Desiccation also seems to be conductive to the release of tetraspores. However, its effect, as in treatment of distilled water for salinity, was hardly found in induction of carpospore discharge. This may suggest that spore discharge in this alga is primarily related with photoperiodic rhythm. Also it appears that the amount of light energy received by fertile thalli also significantly affects to the spore release, considering relationship between the amount of the discharged spores and the elapsed time after treatment.

  • PDF

Corrosion of Steel and Zinc in Tropics

  • Hue Nguyen Viet;Kwon Sik Chol
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.3
    • /
    • pp.272-283
    • /
    • 2003
  • Mild steel and zinc specimens were tested in five atmospheric testing sites of Vietnam in order to collect the corrosion databank as well as to study the corrosion mechanism in tropical conditions, in period of 1997-2000. The results obtained showed that the corrosion rate of steel is in the range of $10-50\;{\mu}m/year$ and of zinc is of $1-5\;{\mu}m/year$. They are interpretable in the comparison with the data obtained in different countries in the South East Asian as well as previous reports of Vietnamese nation project In atmospheric corrosion. The main factors affecting the corrosion in Vietnam tropical conditions are TOW (time of wetness) and salinity. The relationship between sulfur dioxide and corrosion of metals, particularly, zinc was not found clearly. An explanation was suggested about the complex effect of different pieces present in tropical atmosphere and about the alternative of the dominant factors such as humidity, salinity or temperature.

Effect of temperature and salinity on the bacterial degradability of petroleum hydrocarbon (세균의 유류 분해능에 미치는 온도와 염분의 영향)

  • 오영숙;김상종
    • Korean Journal of Microbiology
    • /
    • v.26 no.4
    • /
    • pp.339-347
    • /
    • 1988
  • The rate of bacterial degradation of hydrocarbon was estimated for the measurment of the self-purification capacity of the aquatic ecosystem. Strain ND601P-2, selected as petroleum degrading bacteria from Nakdong River Estuary with high degradability of petroleum, transformed 42% of hexadecane to $CO_{2}$ or cell mateials under the conditions of $25^{\circ}C$, 0.03M NaCl, 167mg-$NH_{4}^+/1, 950 mg-PO_{4}^{3-}$/1, 50 mg-hexadecane/1. The mineralization rate was found to be significantly affected by the temperature and the $Q_{10}$ value was 2.2. Teh optimal salinity of the strain ND601P-2 was 2o/oo. The increased salinity caused the elevation of % respiration value and the prolonged lag phase.

  • PDF