• Title/Summary/Keyword: salinity effect

Search Result 541, Processing Time 0.03 seconds

Effect of Chaff on Aerobic Composting of Food Wastes (왕겨가 음식물쓰레기의 호기성 퇴비화에 미치는 영향)

  • 박석환
    • Journal of Environmental Health Sciences
    • /
    • v.29 no.2
    • /
    • pp.56-61
    • /
    • 2003
  • This study was performed to examine the effects of chaff as a bulking material on temperature, pH, weight and volume reduction and salinity in aerobic composting of food wastes. Volume ratios of food wastes to chaff in reactor of Control, Ch-1. Ch-2, Ch-3 and Ch-4 were 4:0, 4:1, 4:2, 4:3 and 4:4. respectively. Reactors were operated for 24 days with 1 hour stirring by 1 rpm and 2 hours aeration per day. The lowering of the volume ratio of food wasted to chaff resulted in the reaction at higher reaction temperature and the elongation of the high temperature reaction period. The lowering of the volume ratio of food wastes to chaff resulted in the more faster pH increase. The lowering of the volume ratio of food wastes to chaff resulted in the more faster reduction in the weight and the volume of wastes. Salinities were condensed by reaction days. The final salinity of Control and the final range of salinities of chaff mixtures were 2.79%, and 2.18~2.37%. respectively.

A Study on the Flow Patterns on the Myunggi-Noksan Region due to Reclamation (명지 . 녹산 해역 매립후의 해수 유동에 관한 연구)

  • 한건모;김기철;김재중
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.81-91
    • /
    • 1993
  • Studies on the flow pattern due to reclamation in the Myunggi-Nocksan region are carried out based on field observations and numerical experiments. Serial time series measurement of current, temperature and salinity were conducted for 1 tidal period at intervals of 1 hour from surface to bottom on station located at 128.deg. 54' 44" E, 35.deg. 01' 04" N in April and June 1992. Surface current opposite to the subsurface current causes turbulent mixing to make homogeneous salinity pattern in vertical section. Reclamation has little effect on the wave pattern and flow patterns are also nearly similar except on the nearby region of reclamation where flow speed somewhat weakened.

  • PDF

Transient Groundwater Flow Modeling in Coastal Aquifer

  • Li Eun-Hee;Hyun Yun-Jung;Lee Kang-Kun;Park Byoung-Won
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.293-297
    • /
    • 2006
  • Submarine groundwater discharge (SGD) and the interface between seawater and freshwater in an unconfined coastal aquifer was evaluated by numerical modeling. A two-dimensional vertical cross section of the aquifer was constructed. Coupled flow and salinity transport modeling were peformed by using a numerical code FEFLOW In this study, we investigated the changes in groundwater flow and salinity transport in coastal aquifer with hydraulic condition such as the magnitude of recharge flux, hydraulic conductivity. Especially, transient simulation considering tidal effect and seasonal change of recharge rate was simulated to compare the difference between quasi-steady state and transient state. Results show that SGD flux is in proportion to the recharge rate and hydraulic conductivity, and the interface between the seawater and the freshwater shows somewhat retreat toward the seaside as recharge flux increases. Considered tidal effect, SGD flux and flow directions are affected by continuous change of the sea level and the interface shows more dispersed pattern affected by velocity variation. The cases which represent variable daily recharge rate instead of annual average value also shows remarkably different result from the quasi-steady case, implying the importance of transient state simulation.

  • PDF

A Numerical Prediction for Water Quality at the Developing Region of Deep Sea Water in the East Sea Using Ecological Model (생태계모델을 이용한 동해 심층수 개발해역의 수질환경 변화예측)

  • Lee, In-Cheol;Yoon, Seok-Jin;Kim, Hyeon-Ju
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.34-41
    • /
    • 2008
  • As a basic study for developing a forecasting/estimating system that predicts water quality changes when Deep Sea Water (DSW) drains to the ocean after using it, this study was carried out as follows: 1) numerical simulation of the present state at DSW developing region in the East sea using SWEM, 2) numerical prediction of water quality changes by effluent DSW, 3) analysis of influence degree 'With defined DEI (DSW effect index) at F station. On the whole, when DSW drained to the ocean, Chl-a, COD and water-temperature were decreased and DIN, DIP and DO were increased by effluent DSW, and Salinity was steady. According to analysis of influence degree, the influence degree of DIN was the highest and it was high in order of Chl-a, COD, Water-temperature, DO, DIP and Salinity. The influence degree classified by DSW effluent position was predicted that suiface outflow was lower than bottom outflow. Ad When DSW discharge increased 10 times, the influence degree increased about $5{\sim}14$ times.

Effect of Bacillus mesonae H20-5 on Fruit Yields and Quality in Protected Cultivation

  • Yoo, Sung-Je;Kim, Jeong Woong;Kim, Sang Tae;Weon, Hang-Yeon;Song, Jaekyeong;Sang, Mee Kyung
    • Research in Plant Disease
    • /
    • v.25 no.2
    • /
    • pp.84-88
    • /
    • 2019
  • A variety of microorganisms in rhizosphere affect plant health by plant growth promotion, mitigation of abiotic stresses as well as protection from pathogen attacks. In our previous study, we selected a bacterium, Bacillus mesonae H20-5, for alleviation of salinity stress in tomato plants. In this study, we verified the effect of a liquid formulation of B. mesonae H20-5 (TP-H20-5) on fruit production and phytochemical accumulation including lycopene and polyphenol in cherry tomato and strawberry fruits in on-farm tests of protected cultivation under salinity stress. When vegetables including tomato, cherry tomato, strawberry, and cucumber were treated with TP-H20-5 by irrigated systems, final marketable yields were increased by 21.4% (cherry tomato), 9.3% (ripen tomato), 120.6% (strawberry), and 14.5% (cucumber) compared to untreated control. Moreover, treatment of TP-H20-5 was showed increase of phytochemicals such as lycopene and total polyphenol compared to untreated control in cherry tomato and strawberry. Therefore, these results indicated that a formulant of B. mesonae H20-5 can be used as a potential biofertilizer for increasing fruit production and quality.

Effect of Soil Salinity Variation on the Growth of Barley, Rye and Oat Seeded at the Newly Reclaimed Tidal Lands in Korea (신간척지토양의 공간적 토양염농도 변이가 보리, 호밀 및 귀리의 생육에 미치는 영향)

  • Sohn, Yong-Man;Jeon, Geon-Yeong;Song, Jae-Do;Lee, Jae-Hwang;Park, Moo-Eon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.6
    • /
    • pp.415-422
    • /
    • 2009
  • Effect of soil salinity variation on the growth of barley, rye and oat was studied at the Hwaong, Iweon and Yeongsangang reclaimed lands in the western seaside of Korea. Soil salinity variation and soil EC were very high for crops to be killed or to be brought serious growth retardation during the growing season at the Iweon and Hwaong reclaimed lands, but fully low not to bring growth retardation at the Yeongsangang reclaimed land. Relation between soil salinity and crop growth and yield was well expressed as logarithmic function. Surface soil EC to reach at 50% of seed-emergence reduction was estimated $6.5dS\;m^{-1}$ for barley and $5.1dS\;m^{-1}$ for rye and oat by logarithmic function. In addition, surface soil EC to reach at 50% of grain yield reduction to the best growth in the experimental site was estimated $5.6dS\;m^{-1}$ for barley, $5.8dS\;m^{-1}$ for rye and $5.7dS\;m^{-1}$ for oat, while soil EC to reach at 50% of dry matter reduction was estimated $5.5dS\;m^{-1}$ for barley, $6.2dS\;m^{-1}$ for rye and $5.8dS\;m^{-1}$ for oat by logarithmic function. Grain yield of barley, rye and oat was 395, 164 and $325kg\;10a^{-1}$ in the Yeongsangang reclaimed lands naturally controlled below condition of $6dS\;m^{-1}$ of soil EC, but no harvest was obtained in the Hwaong and Iweon reclaimed land because of high salinity more than $15dS\;m^{-1}$ in maximum soil EC during growing period. Consequentially, it was concluded that soil salinity must be controlled below $6dS\;m^{-1}$ for good growth and high yield of winter barley, rye and oat in the reclaimed land in Korea.

Effect of pore-water salinity on freezing rate in application of rapid artificial ground freezing to deep subsea tunnel: concentration of laboratory freezing chamber test (고수압 해저터널에 급속 인공동결공법 적용시 간극수의 염분 농도가 동결속도에 미치는 영향 평가: 실내 동결챔버시험 위주로)

  • Oh, Mintaek;Lee, Dongseop;Son, Young-Jin;Lee, In-Mo;Choi, Hangseok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.5
    • /
    • pp.401-412
    • /
    • 2016
  • It is extremely difficult to apply conventional grouting methods to subsea tunnelling construction in the high water pressure condition. In such a condition, the rapid artificial freezing method can be an alternative to grouting to form a watertight zone around freezing pipes. For a proper design of the artificial freezing method, the influence of salinity on the freezing process has to be considered. However, there are few domestic tunnel construction that adopted the artificial freezing method, and influential factors on the freezing of the soil are not clearly identified. In this paper, a series of laboratory experiments were performed to identify the physical characteristics of frozen soil. Thermal conductivity of the frozen and unfrozen soil samples was measured through the thermal sensor adopting transient hot-wire method. Moreover, a lab-scale freezing chamber was devised to simulate freezing process of silica sand with consideration of the salinity of pore-water. The temperature in the silica sand sample was measured during the freezing process to evaluate the effect of pore-water salinity on the frozen rate that is one of the key parameters in designing the artificial freezing method in subsea tunnelling. In case of unfrozen soil, the soil samples saturated with fresh water (salinity of 0%) and brine water (salinity of 3.5%) showed a similar value of thermal conductivity. However, the frozen soil sample saturated with brine water led to the thermal conductivity notably higher than that of fresh water, which corresponds to the fact that the freezing rate of brine water was greater than that of fresh water in the freezing chamber test.

Effect of Water Temperature, Salinity and Rearing Density on the Egg Development of the Hard Clam, Meretrix petechialis (Lamarck) (말백합, Meretrix petechialis (Lamarck)의 난 발생에 미치는 수온, 염분, 수용밀도의 영향)

  • Kim, Tae-Ik;Ko, Chang-Sun;Hur, Young-Baek;Jin, Young-Guk;Chang, Young-Jin
    • The Korean Journal of Malacology
    • /
    • v.27 no.3
    • /
    • pp.167-173
    • /
    • 2011
  • This study was performed to describe the effect of water temperature, salinity and density on the eggs development of the hard clam, Meretrix petechialis. Eggs of Meretrix petechialis were turned out to be demersal isolated eggs of $82.3-86.1{\mu}m$ in an average diameter after spawning. The hatching rate of D-shaped larvae by elapsed time after spawning was the highest in fertilization immediately after spawning and distinguished decrease from 1 hour of spawning. The optimum water temperature for development of D-shaped larvae from fertilization was ranged between $25^{\circ}C$ to $27^{\circ}C$. However, D-shaped larvae was not developed at $33^{\circ}C$ of water temperature. The required time from fertilization to D-shaped larvae were 37.3 hours in $20^{\circ}C$, 20.8 hours in $25^{\circ}C$, and 15.3 hours in $30^{\circ}C$. Biological minimum temperature for the egg development was estimated to be $12.4^{\circ}C$ in average. The range of salinity for the development of eggs were 20.0-37.5 psu, optimum range was estimated to be 27.5-32.5 psu.

Physiological Response of Young Seedlings from Five Accessions of Diospyros L. under Salinity Stress

  • Wei, Ping;Yang, Yong;Fang, Ming;Wang, Fei;Chen, Hejie
    • Horticultural Science & Technology
    • /
    • v.34 no.4
    • /
    • pp.564-577
    • /
    • 2016
  • Salinity stress limits plant cultivation in many areas worldwide; however, persimmon (Diospyros spp.) has high tolerance to salt. Five accessions of Diospyros [three of Diospyros lotus (accession numbers 824, 846, and 847); one of Diospyros kaki var. sylvestris (869); and one of Diospyros virginiana (844)] were chosen for analysis of salinity stress. We compared the effects of salt stress on plant growth, relative water content (RWC), malondialdehyde (MDA), electrolyte leakage (EL), hydrogen peroxide content ($H_2O_2$), and antioxidative enzyme activities (superoxide dismutase, SOD; catalase, CAT; peroxidase, POD; and ascorbate peroxidase, APX) in leaves of healthy potted seedlings from each of the five accessions after salt treatment for 25 days. Salt stress affected the growth of plants in all five accessions, with all three D. lotus accessions showing the most severe effect. Salt stress increased membrane lipid peroxidation in all accessions, but a stronger increase was observed in the three D. lotus accessions. Moreover, accumulation of $H_2O_2$ was faster in salt-sensitive D. lotus compared to salt-tolerant D. virginiana 844. The activities of all antioxidant enzymes increased in D. virginiana 844 and in D. kaki var. sylvestris 869; the activities of SOD, CAT, and APX were at similar levels in D. virginiana 844 and D. kaki var. sylvestris 869, but POD activity was stimulated to a greater extent in D. virginiana 844. The activities of all antioxidant enzymes (except POD) decreased in D. lotus 824 and increased (except for SOD) in D.lotus 846. The activities of SOD and APX decreased in D. lotus 847, whereas POD and CAT activities both increased. Relative water content decreased significantly in D. lotus. No significant changes in lipid peroxidation or relevant antioxidant parameters were detected in any of the accessions in controls treated with 0.0% NaCl. D. virginiana 844 had higher antioxidant capacity in response to salinity compared to other persimmon rootstocks. These results indicate that changes of these key physiological variables are related to salinity resistance in different accessions of persimmon.