• 제목/요약/키워드: salinity effect

검색결과 539건 처리시간 0.029초

물질순환모델을 이용한 제주항의 수질관리(I) - 제주항의 물리해양환경의 변화 - (Water quality management of Jeiu Harbor using material cycle model(I) - The Variation of Physical Oceanographic Environments in Jeiu Harbor -)

  • 조은일;이병걸;오윤근
    • 한국환경과학회지
    • /
    • 제11권1호
    • /
    • pp.25-32
    • /
    • 2002
  • In order to control of water quality in Jeju harbor, variation of physical oceanographic environments was estimated using material cycle model. It is composed of the three-dimensional hydrodynamic model for the simulation at water flow and material cycle model for the simulation of water quality. The three dimensional hydrodynamic model simulation of the circulation and mixing in Jeju Harbor has been conducted forced by Sanzi River Discharge, Tidal elevation, wind and Solar heat in case of August and November, 2000 and February and May, 2001, respectively. The results of numerical model and observation show that the model can produce realistic results of current in the harbor. The monthly variation of velocity pattern are not so much changed are found In Jeju Harbor. The residual current was forced by temperature, salinity, density, wind and tidal current. The residual current of August, 2000 are the strongest among four month. It can be explained that the density effect can be important role in residual current at Jeju Harbor. As the results of salinity distribution simulation, very low concentration of all levels were simulated in August, 2000. The flowrate of Sanzi river was investigated 77,760 ㎥ /d in August, 2000. Therefore, pollutant loadings from Sanzi river should be considered for water quality management in Jeiu harbor.

염분농도에 따른 해양미세조류(Nannochloropsis oculata)의 지질 및 지방산의 변화 (Lipid and Fatty Acid Composition in Nannochloropsis oculata Cultured in Varying Salinities)

  • 정우철;한종철;최병대;강석중
    • 한국수산과학회지
    • /
    • 제46권3호
    • /
    • pp.252-258
    • /
    • 2013
  • The quality and quantity of food organisms in fish seed production are important. The marine microalgae Nannochloropsis oculata are used as initial food organisms in the field. We investigated the effects of salinity (0, 10, 20, 30, 40 and 50 psu) on the lipid and fatty acid composition of N. oculata. Cultivation of N. oculata at varying salinities showed the highest growth rate at 20 psu. Total lipid content ranged from 17.26 to 18.63% at salinities from 0 to 50 psu). The nonpolar lipid content increased markedly at 30 psu and was highest at 15.55%. The polar lipid content was lowest at 30 psu, by 84.45%. It was also found that the omega-3 and EPA contents were inversely proportional to salt concentration. For the polar and nonpolar lipid compositions, there was no significant effect of salinity. Omega-3 polyunsaturated fatty acid content especially the content of EPA in the seawater larvae is the essential fatty acid in this food organism. It is thus advantageous to culture N. oculata at 20 psu.

격자 해상도에 따른 EFDC의 새만금호 모의 (The Comparison of Grid Resolutions using EFDC in Saemangeum Reservoir)

  • 신유리;장정렬;최정훈;조영권
    • 한국물환경학회지
    • /
    • 제28권5호
    • /
    • pp.646-656
    • /
    • 2012
  • This study area was Saemangeum Reservoir in Korea and the applied model was Environmental Fluid Dynamics Code(EFDC). It was the same as the scenarios to the boundary and initial conditions except the resolutions of the model grids. The resolutions were about 800 and 2,000 cells. It was considered scenario 1 and 2. The model was performed to simulate the water temperature, salinity, water quality parameters such as dissolved oxygen(DO), chemical oxygen demand(COD), total nitrogen(T-N), and total phosphorus(T-P) at 2008. The simulation results of the two scenarios were reflected in the trend of observed data tolerably. However, water flow, water temperature, and salinity showed high confidence level at the scenario 1. The water quality items did not present high confidence level at the scenario 1 because which concept was considered to biochemical and physical processes. This result shows that grid resolution has an influence on the water transport and the effect is reflected directly shallow and narrow water area. But, the selection of grid resolution should be considered the purpose of model simulation and the process of target items.

뇌신경절단법(MSK법)으로 치사한 활어복의 숙성시 숙성수 침지시간에 따른 어육의 품질변화 (Changes in Puffer Fish Quality Induced by Soak Time in Maturing Water during Maturation of Puffer Fish Prepared via the Cutting Cranial Nerve Method (MSK Method))

  • 문승권;유승석
    • 한국식품조리과학회지
    • /
    • 제26권4호
    • /
    • pp.428-433
    • /
    • 2010
  • The aim of this research was to determine the relationship between quality of puffer fish and soak time in maturing water. This research used the cutting cranial nerve method, which is called the MSK method. The data was analyzed using the SPSS program. Based on salinity analysis result, both moisture content and pH were measured after 20 min of soaking. As the salinity of the maturing water increased, the moisture content initially decreased then increased once the salinity was greater than 3%. However, the concentration of the maturing water did not influence the pH level. The texture properties were measured to assess the effect of soak time in the maturing water. Hardness of the sample was highest (3.99) at 20 min, and cohesiveness also showed a maximum value (0.26) at 20 min. Gumminess and chewiness were highest 1.04 and 4.09, respectively, when the fish was matured for 20 min. Sensory properties were evaluated, and springiness, umami flavor, texture, and overall preference were highest at 20 min of soak time. The results showed that maturing the puffer fish for 20 min provided the best quality of texture and sensory characteristics for the fish.

Photosynthetic Response of Korean Ginseng under Saline Condition

  • Cho, Jin-Woong;Kim, Choong-Soo
    • 한국작물학회지
    • /
    • 제49권2호
    • /
    • pp.100-104
    • /
    • 2004
  • This study was conducted to investigate the effect of the salinity on growth, inorganic ion content, and photosynthetic rate ($\textrm{P}^{N}$) in Korean ginseng (Panax ginseng C.A. Meyer) with complex fertilizer (CF) and NaCl concentrations. The salinity was applied to plant using NaCl and CF, and controlled an EC as 0.0, 1.0, 2.0 and 3.0 dS $\textrm{m}^{-1}$. The salinity treated three times at 35, 42 and 49 d after transplanting. The leaf area in different electrical conductivity (EC) decreased only the higher NaCl 1.0 dS $\textrm{m}^{-1}$. The root growth increased with CF and especially, it was two times higher at 3.0 dS $\textrm{m}^{-1}$ than that of control. But the root growth sharply decreased with NaCl compared to CF. The light saturation point of Korean ginseng was around 100 $\mu\textrm{mol}\;\textrm{m}^{-2}\textrm{s}^{-1}$ photosynthetically active radiation (PAR), and $\textrm{P}^{N}$ increased as CF increased but decreased with NaCl especially at the late growth stage. The $\textrm{Na}^{+}$ content in Korean ginseng increased sharply with NaCl.

남해 당항만 하구둑 유무에 따른 어류상 비교 (Effects of Estuarine Dam on Fish Assemblage in Danghang Bay of the South Sea, Korea)

  • 박준수;곽우석
    • 한국어류학회지
    • /
    • 제31권2호
    • /
    • pp.83-89
    • /
    • 2019
  • 경남 고성군 당항만 하구에서 2011년 9월부터 2012년 8월까지 자연 하구인 배둔천 하구, 구만 마암천 하구는 소형 Beam trawl, 폐쇄 하구인 고성천 하구역에서는 투망으로 어류를 채집하였다. 염분은 폐쇄 하구가 자연 하구보다 변화 폭이 적었다. 자연 하구에서는 대부분 망둑어과 어류들이 채집되었으며 줄망둑(Acentrogobius pflaumi)과 문절망둑(Acanthogobius flavimanus) 순으로 우점하였다. 폐쇄 하구에서는 피라미(Zacco platypus)와 민물검정망둑(Tridentiger brevispinis) 순으로 우점하였고 담수 어종이 대부분 채집되었다. 당항만 하구역에 설치된 하구둑에 의해 염분을 포함한 환경조건이 바뀌어 서식하는 어류상이 크게 변화되었다.

하구 생태 복원을 위한 생태구역 구분; 남해 고성만 고성천 인근 하구의 예 (Classifications of Ecological Districts for Estuarine Ecosystem Restoration; Examples of Goseong Bay Estuaries, South sea, Korea)

  • 안순모;이상룡;최재웅
    • 한국해양학회지:바다
    • /
    • 제16권2호
    • /
    • pp.70-80
    • /
    • 2011
  • 연안 하구는 인위적인 개발압력이 상존하며 자연적인 변화에도 민감하게 반응하는 지역이다. 따라서 보존과 지속 가능한 이용을 위해서는 하구 생태계의 구조와 기능에 대한 이해가 필요하며, 인위적 혹은 자연적 변화에 어떻게 반응할 것인지를 아는 것이 필요하다. 하구 생태계 변화의 방향과 현 상태를 용이하게 판단하기 위한 노력의 하나로서 비오톱(biotope)과 하구 타입 분류(typology)를 이용하여 "생태 구역"을 정의하였다. 하구댐의 유무, 염분특성, 식생유무에 따라 16개의 생태 구역을 정의하였고, 고성만에 위치한 고성천 인근 4개 하구(배둔, 구만, 마암, 고성) 생태계에서 지형, 하상경사, 퇴적물 특성, 염분 구조, 식생 면적 등을 통해 생태구역 구분을 시도하였다. 고성천 인근 하구에는 총 16개 생태구역 중 7개가 구분되었다. 자연형 하천인 구만천, 마암천, 배둔천의 상류에는 NFB(natural, fresh, bare)가 나타나고 있으며, 기수 지역에는 NLV(natural, low salinity, vegetated)가 그리고 갯벌에는 NHB(natural, high salinity, bare)가 나타났다. 폐쇄형인 고성천의 경우 담수지역에는 CFB(closed, fresh, bare), 이후 하구쪽으로 CFV(closed, fresh vegetated)가 나타났다. 갈대가 넓게 서식하는 하구댐 안쪽지역은 CLV(closed, low salinity, vegetated)가 나타나며, 거산방조제 바깥쪽은 CHB(closed, high salinity, bare)가 나타났다. 고성천의 CHB와 CLV 지역은 방조제가 하구 생태계에 미치는 영향을 잘 보여주고 있다. 염분이 비교적 높고, 수심이 갚은 수로나 갯벌이 존재하던 CHB 지역이 하구둑에 의해 고염분 지역과 단절되면서 염분이 감소하고, 조석의 영향이 줄어들면서 침수가 줄고, 결국 갈대가 서식하기에 적합한 환경으로 바뀌게 되며, CLV로 바뀐 것으로 여겨진다. 국내의 여러 하구에 나타나는 생태구역을 데이터베이스화하여 각 생태구역의 출현 분포를 파악하는 것이 필요하며, 이러한 자료는 인위적, 자연적 변화에 의한 하구 생태계 변동을 예측하고 관리/대응 방안을 마련하는데 이용될 것이다. 생태구역 변화는 생태구조와 가능의 변화를 가져오기 때문에 생태계 역할 및 가치의 변화를 수반하며, 생태 구역 변화를 야기하는 사업의 타당성을 판단하는 근거자료로 이용될 수 있다.

진해ㆍ마산만의 성층화 및 DO 농도변화 (Stratification and DO Concentration Changes in Chinhae-Masan Bay)

  • 조홍연;채장원;전시영
    • 한국해안해양공학회지
    • /
    • 제14권4호
    • /
    • pp.295-307
    • /
    • 2002
  • 진해ㆍ마산만에서 수온, 염도 및 DO농도를 연직방향으로 1년동안 측정하였다. 관측된 수온 및 염도 자료를 이용하여 성층화 특성을 분석하고, DO농도의 연직변화를 성층화 특성 및 저질오염도와 관련하여 분석하였다. 분석결과, 진해ㆍ마산만의 수온 성층화는 4월 이전에 시작되어 10월경에 종료되는 양상을 보이고 있는 것으로 판단되었다. 또한, 1998년 4월 연직방향의 평균 염도변화는 3.9(equation omitted) 정도로 증가되고, 1998년 8월 9.3(equation omited), 10월 4.3(equation omitted) 정도가 유지되어 가을철에도 염도 성층이지속되고 있는 것으로 파악되었다. 한편, DO 농도는 성층화가 시작되는 4월을 기점으로 연직방향 평균 DO농도변화도 2.6(mg/L)에서 6월 8.3(mg/L), 8월 5.9(mg/L), 9월 7.24(mg/L), 10월4.4(mg/L)으로 명확한 성층화 양상을 보이고 있다. DO 농도변화는 전체적으로 해역의 오염도와 밀접한 관련이 있으나. 성층화 기간동안 연직방향 DO 농도편차가 크게 나타나고 있는것은 수온 및 염도성층에 의한 표 저층간의 물질교환 저해에 의한 영향도 직접적인 요인으로 작용하고 있은 것으로 파악되었다.

Factors Affecting the Wintering Habitat of Major Fishery Resources in Southwestern Korean Waters

  • Kim, Jin-Yeong;Choi, Il-Su;Kim, Joo-Il;Choi, Seok-Gwan;Chun, Young-Yull
    • Ocean Science Journal
    • /
    • 제42권1호
    • /
    • pp.41-48
    • /
    • 2007
  • We investigated the temperature and salinity effects on the major fish species in the wintering grounds based on trawl surveys and oceanographic observations in the southwestern waters of Korea during March-early April in 2002-2003. The influence area of warm Kuroshio water was limited to the southwestern area of Korea in 2003 with a range of $7.7-16.3^{\circ}C$, 32.54-34.70 of salinity, wider than that of 2002. The number of fish species and density of major fish species in 2003 were higher than in 2002. Geographical estimation showed high proportions of species number and catches in the areas around Jeju Islands, southwestern waters and the southeastern coast of Korea. Five species; silver pomfret (Pam pus echinogaster), hairtail (Trichiurus lepturus), anchovy (Engraulis japonicus), Small yellow croaker (Larimichthys polyactis) and yellow goosefish (Lophius litulon) were most abundant, composing above 60% of the total catch in 2002 and 2003. More than 50% of catch in the major fish species were mostly distributed in the range of $9.5-11.0^{\circ}C$ of temperature and 33.1-33.9 of salinity. Non-parametric estimation for the major species showed the 1st mode around $10^{\circ}C$ and the 2nd mode at $8-9^{\circ}C$ in 2002 and $11-14^{\circ}C$ in 2003. Among major fish species, hairtail was principally composed of juveniles, and larger individuals were caught in southeastern waters. These results are considered to be helpful for the area-based fishery management strategy for the wintering grounds of the Yellow Sea and coastal waters of Korea.

Numerical simulation of Hydrodynamics and water properties in the Yellow Sea. I. Climatological inter-annual variability

  • Kim, Chang-S.;Lim, Hak-Soo;Yoon, Jong-Joo;Chu, Peter-C.
    • Journal of the korean society of oceanography
    • /
    • 제39권1호
    • /
    • pp.72-95
    • /
    • 2004
  • The Yellow Sea is characterized by relatively shallow water depth, varying range of tidal action and very complex coastal geometry such as islands, bays, peninsulas, tidal flats, shoals etc. The dynamic system is controlled by tides, regional winds, river discharge, and interaction with the Kuroshio. The circulation, water mass properties and their variability in the Yellow Sea are very complicated and still far from clear understanding. In this study, an effort to improve our understanding the dynamic feature of the Yellow Sea system was conducted using numerical simulation with the ROMS model, applying climatologic forcing such as winds, heat flux and fresh water precipitation. The inter-annual variability of general circulation and thermohaline structure throughout the year has been obtained, which has been compared with observational data sets. The simulated horizontal distribution and vertical cross-sectional structures of temperature and salinity show a good agreement with the observational data indicating significantly the water masses such as Yellow Sea Warm Water, Yellow Sea Bottom Cold Water, Changjiang River Diluted Water and other sporadically observed coastal waters around the Yellow Sea. The tidal effects on circulation and dynamic features such as coastal tidal fronts and coastal mixing are predominant in the Yellow Sea. Hence the tidal effects on those dynamic features are dealt in the accompanying paper (Kim et at., 2004). The ROMS model adopts curvilinear grid with horizontal resolution of 35 km and 20 vertical grid spacing confirming to relatively realistic bottom topography. The model was initialized with the LEVITUS climatologic data and forced by the monthly mean air-sea fluxes of momentum, heat and fresh water derived from COADS. On the open boundaries, climatological temperature and salinity are nudged every 20 days for data assimilation to stabilize the modeling implementation. This study demonstrates a Yellow Sea version of Atlantic Basin experiment conducted by Haidvogel et al. (2000) experiment that the ROMS simulates the dynamic variability of temperature, salinity, and velocity fields in the ocean. However the present study has been improved to deal with the large river system, open boundary nudging process and further with combination of the tidal forcing that is a significant feature in the Yellow Sea.