• Title/Summary/Keyword: salinity condition

Search Result 337, Processing Time 0.026 seconds

Characteristics of Growth and Germination of Salicornia herbacea L. for the Soil salinity and Manure Condition (토양염분.시비 조건에 따른 퉁퉁마디 생장 및 발아 특성)

  • Jo, Yeong-Cheol;Lee, Kyeong-Sik;Chon, Song-Mi;Byun, Do-Seung
    • Korean Journal of Medicinal Crop Science
    • /
    • v.10 no.2
    • /
    • pp.100-108
    • /
    • 2002
  • This experiment was carried out to investigate the cultivation condition of soil salinity, manure and to find out the cultivation capability of Salicornia herbacea. The optimal growth condition of soil salinity was between 1% and 4%. The growth of groups for fertilization was significantly better than control group. Salicornia herbacea grew very up from 7 kg/l0a to 9 kg/l0a for N, 12 kg/l0a for P and the K-fertilizer group was better than control group but there was not significantly different among the conditions of K-concentration. The germination was good from $0{\textperthousand}\;to\;5{\textperthousand}$ for salinity, from $20^{\circ}C\;to\;30^{\circ}C$ for temperature. On the experiment cultivation, the production by hill seeding was $5.40{\sim}5.90 kg/m^2$ and was significantly higher than the yield by broadcast sowing which was $4.01{\sim}4.20 kg/m^2$. The production by hill seeding was 2.7 times than natural production and the production by broadcast sowing 1.9 times.

Presoaking with $GA_3$ Improves Germination of Zoysiagrass (Zoysia japonica Steud.) Seed on Poor Germination Conditions (발아불량 환경조건에서의 $GA_3$ 침지처리에 의한 들잔디의 종자발아촉진)

  • 구자형;윤병한
    • Asian Journal of Turfgrass Science
    • /
    • v.13 no.1
    • /
    • pp.21-28
    • /
    • 1999
  • The seeds of Zoysiagrass (Zoysia japonica Steud.) were soaked with GA3 50 ppm and primed with CaCl2 at -1.0 MPa for 4days at 23$^{\circ}C$ to identify presoaking and priming regimes that may improve germination in saline condition and with PEG 8000 at high temperature. Presoaked, primed, and untreated seeds were then germinated at 30 and $35^{\circ}C$. NaCl salinity stress consistently decreased the rate of germination of zoysiagrass seed. GA3 or CaCl2 alleviated the inhibitory effect of salinity on germination. However, total percent germination (G) and T50 of untreated control seeds significantly decreased and prolonged at $30^{\circ}C$ and $35^{\circ}C$ as NaCl salinity stress increased. Presoaked seeds with GA3 50 ppm for 4 days at $23^{\circ}C$ had significantly higher germination and lower T50 than untreated or primed with CaCl2 at -1.0 MPa for 4days at $23^{\circ}C$m and overcame the inhibitory effect of germination derived from PEG 8000. In addition, presoaked seed had higher, faster, and more uniform germination than untreated seeds after sowing in growing media in greenhouse.

  • PDF

Analytical Model of Salt Budget in the Upper Indian River Lagoon, Florida USA

  • Kim, Young-Taeg
    • Ocean and Polar Research
    • /
    • v.26 no.1
    • /
    • pp.33-42
    • /
    • 2004
  • Effect of freshwater discharge on the long-term salt balance in the Northern and Central Indian River Lagoon (IRL) is successfully simulated by a new analytical solution to a water balance-based one-dimensional salt conservation equation. Sensitivity tests show that the salinity levels drop abruptly even during the dry season (November to May) due to the high surface runoff discharge caused by tropical storms, depressions, and passage of cold fronts. Increasing surface runoff and direct precipitation has risen by ten times, lowering the salinity level down to 12psu in the Northern Central zone, and to 17 psu in the Northern zone. However, the salinity level in the Southern Central zone has decreased to 25 psu. High sensitivity of the Northern Central zone to freshwater discharge can be partially explained by a rapid urbanization in this zone. During the dry season, less sensitivity of the Southern Central zone to the increased surface runoff is attributed to the proximity of the zone to the Sebastian Inlet and a strong diffusion condition possibly resulting from the seawater intrusion to the surficial aquifer at the Vero Beach. During the wet season, however, the whole study area is highly sensitive to freshwater discharge due to the weak diffusion conditions. High sensitivity of the IRL to the given diffusion conditions guarantees that the fresh-water release occurs during strong wind conditions, achieving both flood control in the drainage basin and a proper salinity regime in the IRL.

Effects of Salinity on Demographic Traits of the Rotifer (Brachionus rotundiformis)

  • Viayeh Reza Malekzadeh;Song Choon Bok
    • Fisheries and Aquatic Sciences
    • /
    • v.7 no.1
    • /
    • pp.39-45
    • /
    • 2004
  • Six demographic parameters including life span (LS), maturation time (MT), net reproduction rate (Ro), mean generation length (G), innate capacity for increase $(r_m)$ and finite rate of increase $(\gamma)$ were estimated in the rotifer (Brachionus rotundiformis) cultured at three salinities of 5, 20 and 34 PSU and under a constant temperature of $28^{\circ}C$. The maximum life spans at salinities of 5, 20 and 34 PSU were 17, 12 and 13 days, respectively. The shortest maturation time (24 hr) was recorded at 5 PSU, and the rotifer at 20 PSU showed a most delayed maturation (192 hr). The maximum reproduction rate was 42 offspring per female in rotifer cultured at 5 PSU, while the longest generation length (8 days) was observed at 20 PSU. Maximum and minimum values of $r_m$ (1.56 and 0.46 individual per day) and $(\gamma)$ (6.67 and 1.70 individuals per day) were calculated at 5 and 34 PSU, respectively. Salinity also showed strong effect on correlation of the demographic traits examined. ANOVA revealed significant differences (P<0.05) between demographic parameters of the rotifer at the three salinity condition. Considering the higher values of life span, innate capacity and finite rate of increase, and shortest maturation time at 5 PSU, the rotifer we examined had a higher reproductive potential and longer life span at 5 PSU rather than at 20 or 34 PSU.

Optimization of diesel biodegradation by Vibrio alginolyticus using Box-Behnken design

  • Imron, Muhammad Fauzul;Titah, Harmin Sulistiyaning
    • Environmental Engineering Research
    • /
    • v.23 no.4
    • /
    • pp.374-382
    • /
    • 2018
  • Petroleum hydrocarbons pollutants, such as diesel fuel, have caused ecosystem damage in terrestrial and aquatic habitats. They have been recognized as one of the most hazardous wastes. This study was designed to optimize the effect of Tween 80 concentration, nitrogen (N)/phosphorus (P) ratio and salinity level on diesel biodegradation by Vibrio alginolyticus (V. alginolyticus). Response surface methodology with Box-Behnken design was selected with three factors of Tween 80 concentration (0, 5, 10 mg/L), N/P ratio (5, 10, 15) and salinity level (15‰, 17.5‰, 20‰) as independent variables. The percentage of diesel degradation was a dependent variable for 14 d of the remediation period. The results showed that the percentages of diesel degradation generally increased with an increase in the amount of Tween 80 concentration, N/P ratio and salinity level, respectively. The optimization condition for diesel degradation by V. alginolyticus occurred at 9.33 mg/L of Tween 80, 9.04 of N/P ratio and 19.47‰ of salinity level, respectively, with percentages of diesel degradation at 98.20%. The statistical analyses of the experimental results and model predictions ($R^2=0.9936$) showed the reliability of the regression model and indicated that the addition of biostimulant can enhance the percentage of diesel biodegradation.

Combining Ability for Morphological and Biochemical Characters in Mulberry (Morns spp.) under Salinity Stress

  • Vijayan, Kunjupillai;Chakraborti, Shyama Prasad;Doss, Subramaniam Gandhi;Ghosh, Partha Deb;Ercisli, Sezai
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.16 no.2
    • /
    • pp.67-74
    • /
    • 2008
  • A line x tester analysis was carried out in mulberry (Morns spp.) under different salinity levels to determine the changes in the genetic interaction of various morpho-biochemical characters. Five mulberry genotypes, 3 females and 2 males, differing in salt tolerance were selected for the study. Clones of these parents along with clones of the F1 hybrids were planted in earthen pots and subjected to different levels of salinity (0.0%, 0.25%, 0.50%, 0.75% and 1.00% NaCl). Data on morphological and biochemical characters were subjected to line x tester analysis. The result revealed significant variation among the parents studied. The prominence of non-additive gene effect under control condition suggests the need for well chalked out breeding program to exploit the non-fixable variance of components for improvement of plant height, leaf size and leaf yield, chlorophyll and photosynthesis in mulberry. However, under salinity stress a shift from non-additive gene effect to additive gene effect for the above said character further suggests the need for a change in breeding strategy. The general combining ability (GCA) analysis has identified English black as the best combiner among the parents and the specific combining ability analysis (SCA) found crosses of English black X C776 and Rotndiloba x Mandalaya were good for Plant height and leaf size and English black X C776 and Rotundiloba x C776 were good for biochemical proline and chlorophyll. From the performance of parents and their crosses under different salinity levels and also under normal cultural conditions it is concluded that in mulberry different approaches are required to develop varieties for the irrigated and saline conditions.

Effects of Salinity and Standard Toxic Metals (Cu, Cd) on Fertilization and Embryo Development Rates in the Sea Urchin (Strongylocentrotus nudus) (염분과 표준 독성물질(Cu, Cd)이 둥근성게(Strongylocentrotus nudus)의 수정 및 배 발생률에 미치는 영향)

  • Hwang, Un-Ki;Lee, Chung-Won;Lee, Seung-Min;An, Kyoung-Ho;Park, Seung-Youn
    • Journal of Environmental Science International
    • /
    • v.17 no.7
    • /
    • pp.775-781
    • /
    • 2008
  • Effects of salinity and standard toxic metals on fertilization and embryo development rates were investigated in the sea urchin, Strongylocentrotus nudus. Spawning was induced by injecting 1ml of 0.5 M KCl into the coelomic cavity. The fertilization and embryo development rates were below 20% when salinity was 25 psu or lower, but were above 90% when salinity was between 30 and 35 psu. The fertilization and embryo development rates in the control condition (not including Cu and Cd) were greater than 90%, but decreased with a high negative correlation (r) of 0.89 and 0.91 with the increasing of Cu and Cd concentrations, respectively. These results suggest that salinity concentrations for successful fertilization and normal embryogenesis of S. nudus are between 30 and 35 psu, and the biological assays of fertilization and embryo development rates using S. nudus are useful methods for the ecological toxicity test of marine pollution elements.

Saline Water Movement In The Estuary Of The Nakdong River (낙동강 하구의 염수운동)

  • Chang, Sun-duck;Ryu, Cheong-ro;Lee, Mun-ok;Lee, Jae Chul
    • 한국해양학회지
    • /
    • v.16 no.1
    • /
    • pp.31-37
    • /
    • 1981
  • Saline water movements in relation to tidal condition and river discharge in the estuary of the Nakdong River are discussed on the basis of the observation data. The difference of salinity between the surface and the bottom layer was 1∼3 at spring tide forming a vertically homogeneous estuary, while at neap tide, it ranges up to 7∼15 indicating a sharp salt wedge. The maximum salinity appeared approximately at an hour after the high water, that is, three hours after the landward velocity maximum, while the salinity maximum at around an hour after the low water, that is, three hours after the seaward velocity maximum. The density current speed at a section located 10km landward from the river mouth was observed approximately to be 45cm sec$\^$-1/ at 8m layer.The relations between the salinity at Gupo and the river discharge at Jindong are estimated by means of the least square method. The maximum length of the salt wedge is calculated approximately to be 22km at neap tide and 16km at spring tide, which is in accordance with the observed data. The salinity influence area is deduced to be 45km at spring tide and 35km at neap tide. The diffusion coefficient of salinity was estimated approximately to be 1.5 10$\^$8/$\textrm{cm}^2$ sec$\^$-1/ at Samrak and 8 10$\^$5/$\textrm{cm}^2$ sec$\^$-1/ at Gupo at neap tide, while it was 1.4 10$\^$7/$\textrm{cm}^2$ sec$\^$-1/ at Dongwon at spring tide.

  • PDF

Effect of salt stress on the anthocyanin content and associated genes in Sorghum bicolor L.

  • Jeon, Donghyun;Lee, Solji;Choi, Sehyun;Seo, Sumin;Kim, Changsoo
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.1
    • /
    • pp.105-117
    • /
    • 2020
  • Abiotic stress is one of the most serious problems in plant productivity because it dramatically delays plant growth and development. One of the abiotic stresses, soil salinity, has an adverse effect on plant growth, particularly in areas where irrigation is necessary like semiarid Asia and Africa. Among several physiological parameters, anthocyanin accumulation is a valuable indicator of the condition of the plant, and it tends to increase under salt stress conditions because of its protective role in such an environment. Consequently, it may be important to search for well adapted genotypes for upcoming climate changes. Anthocyanins are known to have important roles in defense against biotic and abiotic stresses, providing important functions for protecting plant cells from reactive oxygen species. In this study, we investigated the anthocyanin accumulation between two Korean sorghum genotypes, Sodamchal and Nampungchal. The two genotypes were subjected to a regulated salinity condition, and the anthocyanin contents were evaluated in both. In Nampungchal, the anthocyanin content increased with 150 mM NaCl treatment during the time course of the experiment. However, the anthocyanin content of Sodamchal decreased in the same condition. The measured values of the anthocyanin content should be useful to identify the intensity of the salt tolerance in Sorghum bicolor L. Furthermore, we studied gene expression profiling of salt stress related genes with qRT-PCR. These results suggest that Nampungchal is a more tolerant genotype to salt stress compared to Sodamchal. This information should be useful for breeding salt-resistant cultivars in sorghum.