• Title/Summary/Keyword: saline soil

Search Result 250, Processing Time 0.035 seconds

Cost Analysis of Electrokinetic Process for Desalination of Saline Agricultural Land (염류집적 농경지 탈염을 위한 전기역학적 처리공정의 비용산출)

  • Kim, Do-Hyung;Choi, Jeong-Hee;Jo, Sung-Ung;Baek, Ki-Tae
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.4
    • /
    • pp.91-97
    • /
    • 2012
  • In this study, cost analysis of electrokinetic (EK) restoration process for desalination of saline agricultural land was performed for field application based on a pilot scale field application. For reasonable cost analysis, EK process was classified into three major parts: system design, installation and operation. Cost of system installation consists of materials and installation for electrode/electric wire, power supply and data monitoring, drainage system, etc. Operation cost was calculated based on electrical consumption and water charges for EK process. Total cost for EK process was 2,943,013 won for $1000m^2$ in greenhouse area. Cost for system installation was 2,553,786 won, that is, 87% of total cost, while cost for system operation was 389,229 won, that is, 13% of total cost.

Quantitative Assessment of Coastal Groundwater Vulnerability to Seawater Intrusion using Density-dependent Groundwater Flow Model (분산형 해수침투 모델을 이용한 양적 지표 기반의 해안지하수 취약성 평가연구)

  • Chang, Sun Woo
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.6
    • /
    • pp.95-105
    • /
    • 2021
  • Extensive groundwater abstraction has been recognized as one of the major challenges in management of coastal groundwater. The purpose of this study was to assess potential changes of groundwater distribution of northeastern Jeju Island over 10-year duration, where brackish water have been actively developed. To quantitatively estimate the coastal groundwater resources, numerical simulations using three-dimensional finite-difference density-dependent flow models were performed to describe spatial distribution of the groundwater in the aquifer under various pumping and recharge scenarios. The simulation results showed different spatial distribution of freshwater, brackish, and saline groundwater at varying seawater concentration from 10 to 90%. Volumetric analysis was also performed using three-dimensional concentration distribution of groundwater to calculate the volume of fresh, brackish, and saline groundwater below sea level. Based on the volumetric analysis, a quantitative analysis of future seawater intrusion vulnerability was performed using the volume-based vulnerability index adopted from the existing analytical approaches. The result showed that decrease in recharge can exacerbate vulnerability of coastal groundwater resources by inducing broader saline area as well as increasing brackish water volume of unconfined aquifers.

Comparison of hydrochemical informations of groundwater obtained from two different underground storage systems

  • Lee, Jeonghoon;Kim, Jun-Mo;Chang, Ho-Wan
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.110-113
    • /
    • 2002
  • Statistical- based, principal component analysis (PCA) was applied to chemical data from two underground storage systems containing LPG to assess the usefulness of such technique at the initial stage (Pyeongtaek) or middle stage (Ulsan) of hydrochemical studies. For the first case, both natural and anthropogenic contamination characterize regional groundwater. Saline water buffered by Namyang lake affects as a natural factor, whereas cement grouting influence as an artificial factor. For the second study area, contaminations due to operation of LPG caverns, such as disinfection activity and cement grouting effect, deteriorate groundwater quality. This study indicates that principal component analysis would be particularly useful for summarizing large data set for the purpose of subsurface characterization, assessing their vulnerability to contamination and protecting recharge zones.

  • PDF

Effect fo Saline and Alkaline Salts on the Phosphorous contant of Vegetable plants (재배 식물의 P함량에 미치는 무기감류의 영향)

  • 차종환
    • Journal of Plant Biology
    • /
    • v.9 no.3_4
    • /
    • pp.14-18
    • /
    • 1966
  • 1. The effects of saline and alkaline salts on the content of phosphorus in the leaves of selected vegetable plants under soil and sand culture was investigated. 2. The reduction of growth was associated with increasing intensity of salts, although no significant differences was evident. 3. Phosphorus content in the leaves of two plants was depressed with increasing concentration of two typs of salts. 4. It was noticed that the phosphorus content increased with treated salts. That is, phosphorus content was higher in the leaves of treated salt plots than that of control plots and the difference was significant in the soil culture. 5. The values of the phosphorus content were higher in the leaves of two crops of NaCl plots than that of $Na_2CO_3$ plots and the difference was significant in Radish.

  • PDF

Soil Resistant and Blood Repellent Finishes of Nonwoven Fabrics Using Foam (거품을 이용한 부직포의 방오방혈가공)

  • 이정민;배기서;노덕길;전병열
    • Textile Coloration and Finishing
    • /
    • v.4 no.3
    • /
    • pp.74-81
    • /
    • 1992
  • Chemical bonded nonwoven fabric for apparel use and spunlaced nonwoven fabric for medical use were finished for soil resistance and blood replellency with fluorochemicals utilizing foam finishing technology (FFT) and conventional padding application techniques. The FFT process improved soil and abrasion resistance properties of nonwoven fabrics compared with the conventional padding process. Excellent water-oil-saline-alcohol repellency values and water impact penetration values were obtained in the spunlaced nonwoven fabrics with both techniques.

  • PDF

Isolation and Identification of Alkali-tolerant Bacteria from Near-Shore Soils in Dokdo Island

  • Namirimu, Teddy;Kim, Jinnam;Zo, Young-Gun
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.1
    • /
    • pp.105-115
    • /
    • 2019
  • Saline or alkaline condition in soil inhibits growth of most crop plants and limits crop yields in many parts of the world. Augmenting an alkaline soil with alkali-tolerant bacteria capable of promoting plant growth can be a promising approach in expanding fertile agricultural land. Near-shore environments of Dokdo Island, a remote island located in the middle of the East Sea, appear to have patches of seawater-influenced haloalkaline soil that is unsupportive for growth of conventional plants. To exploit metabolic capacities of alkali-tolerant bacteria for promoting plant growth in saline or alkaline soils, we isolated of alkali-tolerant bacteria from near-shore soil samples in Dokdo and investigated properties of the isolates. Alkali-tolerant bacteria were selectively cultivated by inoculating suspended and diluted soil samples on a plate medium adjusted to pH 10. Fifty colonies were identified based on their $GTG_5$-PCR genomic fingerprints and 16S rRNA gene sequences. Most isolates were affiliated to alkali-tolerant and/or halotolerant genera or species of the phyla Firmicutes (68%), Proteobacteria (30%) and Actinobacteria (2%). Unlike the typical soil bacterial flora in the island, alkali-tolerant isolates belonged to only certain taxa of terrestrial origin under the three phyla, which have traits of plant growth promoting activities including detoxification, phytohormone production, disease/pest control, nitrogen-fixation, phosphate solubilization or siderophore production. However, Firmicutes of marine origin generally dominated the alkali-tolerant community. Results of this study suggest that haloalkaline environments like Dokdo shore soils are important sources for plant growth promoting bacteria that can be employed in bio-augmentation of vegetation-poor alkaline soils.

Soil Salinity and Vegetation Distribution at Four Tidal Reclamation Project Areas (4개 간척 지구에 분포하는 식생과 토양 염류농도)

  • Lee, Seung-Heon;Ji, Kwang-Jae;An, Yeoul;Ro, Hee-Myong
    • Korean Journal of Environmental Agriculture
    • /
    • v.22 no.2
    • /
    • pp.79-86
    • /
    • 2003
  • This research was conducted to present reference data to be used as newly reclaimed tidal land management. We investigated vegetation succession at 4 reclaimed/reclaiming project areas and discussed relationship with soil and vegetation trhrough investigation and analysis soil chemical characteristics at 2 areas. 14 families 58 kinds were investigated. Vegetation were variou at Dea-Ho conservation polt and Seok-Mun National Industrial Area which are maintaining naturally. Vegetation were simple at Hong-Bo and Dongjin and MinKyong river areas which effected sea water. Common species that were investigated at 9 sites were Suaeda asparagoides, Aster tripolium, Phragmites australis, Suaeda maritima, Suaeda japonica, Carex scabrifolis. As soil desalinization progressing, soil classified at first saline-soidc soil, the nest saline soil and then normal soil. Chenopodiaceae revealed at about 30 dS/m of soil ECe and existed to 10 dS/m of soil ECe. At about 20 dS/m of soil ECe. Aster tripolium, Calamagrostis epigeios, and Sonchus brachyotus revealed and then non-halophytes and common plants at inland revealed at low soil ECe of about 10 dS/m. However it was not to progress vegetation sucdession and soil desalinization at the same time, owing to input of seeds or plants ect from out-ecosystem. So for promotion of vegetation at newly reclaimed tidal land, we proposed that it was very effective to plant artificially halophytes or suitable species through soil test.

A geochemical study on the saline waters circulating in an ash disposal pond of Seocheon Power Plant. Korea

  • Kim, Kang-Joo;Park, Seong-Min;Kim, Jin-San;Natarajan Rajmohan;Hwang, Gab-Soo;Yun, Seong-Taek;Kim, Hyun-Jung;Kim, Suk-Hwi
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.338-341
    • /
    • 2004
  • This study was carried out to understand the geochemistry of saline water circulating in an ash disposal pond of Seocheon power plant, Korea. For this study, ash pond waters, slurry water and seawater samples were collected and analyzed for major ions and trace elements. Results show that ash pond waters and slurry water are alkaline in nature due to high calcium content, and have high concentration of Ca, B, Li, As, Ba, Al, Si and Mn over seawater, suggest that these elements leached from fly ash even at high alkaline condition and ionic strength. Slurry water has high concentration of B, Ba, Li, Mn, Si and Sr compare to ash pond waters, expresses that these elements seem to be easily reached at initial stage fly ash-water interaction, and also might be associated with the surface of the fly ash particles. Additionally, PHREEQC program predicted several secondary solid phases, which are also influenced in the leaching of elements in to the saline water.

  • PDF

Characterization of Kinetics of Urea Hydrolysis in A Newly Reclaimed Tidal Soils

  • Kim, Hye-Jin;Park, Mi-Suk;Woo, Hyun-Nyung;Kim, Gi-Rim;Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.1
    • /
    • pp.84-90
    • /
    • 2011
  • It is imperative to study the hydrolysis of urea in high saline-sodic condition of a newly reclaimed tidal land in order to overcome the problems associated with use of urea fertilizer. The methodology adopted in this study tried to get a convenient way of estimating rate for N transformation needed in N fate and transport studies by reviewing pH and salt contents which can affect the microbial activity which is closely related to the rate of urea hydrolysis. The hydrolysis of urea over time follows first-order kinetics and soil urease activity in reclaimed soils will be represented by Michaelis-Menten-type kinetics. However, high pH and less microorganisms may delay the hydrolysis of urea due to decrease in urease activity with increasing pH. Therefore, the rate of urea hydrolysis should adopt $V_{max}$ referring enzyme activity ($E_0$) accounting for urease concentration which is indicative for urea hydrolysis, especially in a high saline and sodic soils.