• Title/Summary/Keyword: salicylic acids

Search Result 61, Processing Time 0.026 seconds

Association of Riboflavin and Drug Molecules (Riboflavin과 약품 분자와의 회합)

  • 유병설
    • YAKHAK HOEJI
    • /
    • v.28 no.2
    • /
    • pp.101-127
    • /
    • 1984
  • The study of interaction between riboflavin derivatives and biologically active substances was reviewed. With combination of spectroscopic methods such as NMR, UV, Fluorescence and IR, informations about interaction mechanism including hydrogen bond formation, conformation of association complex, and association constant were obtained. 1. Riboflavin associated with adenine but not with other bases found in the nucleic acids. -CONHCO- group was included in the formation of hydrogen bond with adenine. 2. Riboflavin interacted with alcohol to make a 1 : 1 association complex through the 3N-imino and 2C-carbonyl group of the isoalloxazine ring and the hydroxyl group of the alcohols. 3. Riboflavin associated with salicylates to produce the cyclic hydrogen-bonded dimer. The strongest complex was formed with salicylic acid, a weaker one with aspirin, and an even weaker one with salicylamide. 4. Other bio-active substances, orotic acid and inhibitors such as phenol, trichloroacetic acid and indol also formed hydrogen bond with riboflavin. 5. Reduced riboflavin showed strong self-association to produce the cyclic hydrogen-bonded complex and it associated with adenine and with cytosine to form 1 : 3 complex.

  • PDF

From the Photosynthesis to Hormone Biosynthesis in Plants

  • Hyong Woo Choi
    • The Plant Pathology Journal
    • /
    • v.40 no.2
    • /
    • pp.99-105
    • /
    • 2024
  • Land plants produce glucose (C6H12O2) through photosynthesis by utilizing carbon dioxide (CO2), water (H2O), and light energy. Glucose can be stored in various polysaccharide forms for later use (e.g., sucrose in fruit, amylose in plastids), used to create cellulose, the primary structural component of cell walls, and immediately metabolized to generate cellular energy, adenosine triphosphate, through a series of respiratory pathways including glycolysis, the tricarboxylic acid cycle, and oxidative phosphorylation. Additionally, plants must metabolize glucose into amino acids, nucleotides, and various plant hormones, which are crucial for regulating many aspects of plant physiology. This review will summarize the biosynthesis of different plant hormones, such as auxin, salicylic acid, gibberellins, cytokinins, ethylene, and abscisic acid, in relation to glucose metabolism.

Identification of Biologically Active Substances from Lilac(Syringa vulgaris L.) (라일락 잎에 함유된 생리활성물질의 동정)

  • Hwang, S.J.;Shin, D.H.;Kim, K.U.
    • Korean Journal of Weed Science
    • /
    • v.17 no.3
    • /
    • pp.334-344
    • /
    • 1997
  • Inhibitory substance in the water extracts from lilac(Syringa vulgaris) leaves was determined in terms of the allelopathic chemicals. The water extracts from S. vulgaris leaves inhibited the germination and root growth of Digitaria sanguinalis and L. sativa, indicating that a biological substances are presented in the lilac leaves. The phenolic acids were separated and tentatively identified from S. vulgaris leaves by gas chromatography and there were composed of higher contents of p-coumaric acid, salicylic acid, pyrogallol, and catechol. Polyphenolic compounds such as rutin (5.3%), scopoletin (3.3%), kaempferol (2.9%), and other polyphenolic compotmds were detected from lilac leaves. The mixtures of $10^{-6}M$ of pyrogallol with all the concentrations of catechol had high inhibition of the shoot growth on D. sanguinalis and E. crus-galli regardless of the catechol concentrations.

  • PDF

Antioxidative Activity of a Medicinal Herb Mixture Prepared through the Traditional Antidiabetic Prescription (당뇨처방에 근거한 생약재 복합물의 항산화 활성)

  • Lee, Gee-Dong
    • Food Science and Preservation
    • /
    • v.18 no.6
    • /
    • pp.916-922
    • /
    • 2011
  • The antioxidative activity of a medicinal herb mixture combined with traditional natural herbal materials was investigated. The medicinal herb mixture yielded 35.00% water extracts and 25.33% 80% ethanol extracts. The ethyl acetate fraction yields were 0.64% in the water extracts and 3.76% in the 80% ethanol extracts. The total flavonoid contents of the water and 80% ethanol extracts were 2.34 and 2.42%, respectively, and their total phenolic contents were 5.04 and 4.56%. The total flavonoid and phenolic contents of the ethyl acetate fraction were the highest in the various solvent extracts. The extracts were rich in salicylic and ${\rho}$-coumaric acids. The electron-donating ability of the medicinal herb mixture was 43.32% in the water extracts and 41.32% in the 80% ethanol extracts, and the nitrite-scavenging ability was 9.68% in the water extracts and 8.94% in the 80% ethanol extracts.

Isolation and characterization of LHT-type plant amino acid transporter gene from Panax ginseng Meyer

  • Zhang, Ru;Zhu, Jie;Cao, Hong-Zhe;Xie, Xiao-Lei;Huang, Jing-Jia;Chen, Xiang-Hui;Luo, Zhi-Yong
    • Journal of Ginseng Research
    • /
    • v.37 no.3
    • /
    • pp.361-370
    • /
    • 2013
  • A lysine histidine transporter (LHT) cDNA was isolated and characterized from the roots of Panax ginseng, designated PgLHT. The cDNA is 1,865 bp with an open reading frame that codes for a protein with 449 amino acids and a calculated molecular mass of 50.6 kDa with a predicted isoelectric point of 8.87. Hydropathy analysis shows that PgLHT is an integral membrane protein with 9 putative membrane-spanning domains. Multiple sequence alignments show that PgLHT shares a high homology with other plant LHTs. The expression profile of the gene was investigated by real-time quantitative polymerase chain reaction during various chemical treatments. PgLHT was up-regulated in the presence of abscisic acid, salicylic acid, methyl jasmonate, NaCl, and amino acids. To further explore the function of PgLHT gene, full-length cDNA of PgLHT was introduced into P. ginseng by Agrobacterium rhizogenes A4. The overexpression of PgLHT in the hairy roots led to an obviously increase of biomass compared to the controls, and after addition of the amino acids, the overexpressed-PgLHT hairy roots grew more rapidly than untreated controls during early stage of the culture cycle. The results suggested that the PgLHT isolated from ginseng might have role in the environmental stresses and growth response.

Influence of Various Acids Added to Irrigation Water on the Reduction of Bicarbonate Injury during Vegetative Propagation of 'Seolhyang' Strawberry (관개수에 첨가되는 산 종류가 영양생장 중인 '설향' 딸기의 중탄산 피해 경감에 미치는 영향)

  • Lee, Hee Su;Choi, Jong Myung;Kim, Tae Il;Kim, Hyun Sook;Jang, Won Suk;Lee, Hee Chul;Lee, In Ha;Nam, Myeong Hyeon
    • Horticultural Science & Technology
    • /
    • v.34 no.4
    • /
    • pp.607-615
    • /
    • 2016
  • This research was conducted to investigate the influence of different kinds of acids added to irrigation water containing high levels of bicarbonate on the growth and daughter plant production during the propagation of 'Seolhyang' strawberry. Fertigation solution was prepared with equal concentrations of essential nutrients as found in Hoagland solution, plus $240mg{\cdot}L^{-1}\;HCO_3{^-}$. The concentrations of $HCO_3{^-}$ in the treatment solution were decreased to $60mg{\cdot}L^{-1}$ by the addition of $HNO_3$, $H_3PO_4$, $H_2SO_4$, $HNO_3+H_3PO_4$, or salicylic acid. The mother plants transplanted to raised beds were treated with a specific treatment solution for 126 days and growth and daughter plant productions were monitored. The fresh weight of mother plants in the -control treatment ($240mg{\cdot}L^{-1}\;HCO_3{^-}$) was significantly lower than those in acid containing treatments. The number of daughter plants produced per mother plant was 13 in the -control treatment, but 19.4, 20.1, 18.6, 22.4, and 18.9 in the treatments of $HNO_3$, $H_3PO_4$, $H_2SO_4$, $HNO_3+H_3PO_4$ and salicylic acid, respectively. The substrate pHs after 126 days of treatment were 8.2 and 7.3 in the -control and salicylic acid treatments, respectively, but 5.5, 5.4, 5.3, and 5.5 in the treatments of $HNO_3$, $H_3PO_4$, $H_2SO_4$, and $HNO_3+H_3PO_4$ treatments, respectively. The tissue Ca and Mg contents of mother plants were significantly higher in +control ($90mg{\cdot}L^{-1}\;HCO_3{^-}$) and various acid blending treatments compared to the -control treatment. By contrast, Ca and Mg contents were not significantly different among treatments with acids. The Fe, Mn, Zn, and Cu contents in plant tissue of -control were also significantly lower than those in all other treatments.

A Major Antioxidative Components and Comparison of Antioxidative Activities in Black Soybean (검정콩의 주요 항산화 원인물질 및 항산화 효과의 비교)

  • Kim, Sun-Hee;Kwon, Tai-Wan;Lee, Young-Soon;Choung, Myoung-Gun;Moon, Gap-Soon
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.73-77
    • /
    • 2005
  • Contents of isoflavone, phenolic acids, tocopherol, and anthocyanin in black soybean (Glycine max) were measured by HPLC. To compare antioxidative activities of main black soybean components, antioxidative effects of the same levels of commercial standard components were measured by Trolox equivalent antioxidant capacity assay (TEAC). Most effective component was gentisic acid followed by anthocyanin, p-coumaric acid, ferulic acid, genistein, syringic acid, and daidzein. TEAC assay results revealed genistein in isoflavone, gentisic acid in phenolic acids, p-tocopherol in tocopherol, and anthocyanin showed highest antioxidative and synergistic acitivities, with anthocyanin showing strongest synergy effect.

Effect of Heavy Metal Resistant and Halotolerant Rhizobacterium Bacillus safensis KJW143 on Soybean under Salinty and Cadmium Exposure

  • Eun-Hae Kwon;Ho-Jun Gam;Yosep Kang;Jin-Ryeol Jeon;Ji-In Woo;Sang-Mo Kang;In-Jung Lee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2023.04a
    • /
    • pp.32-32
    • /
    • 2023
  • Cadmium and salt exposure to crops is considered vulnerable for production as well as consumption. To address these challenges, the current study aimed to mitigate the toxicity induced by salt and cadmium in soybean plants through the application of bacterial strain Bacillus safensis KJW143 isolated from the rhizosphere of oriental melon..The bioassay analysis revealed that KJW143 is a highly salt-tolerant and cadmium-resistant (Cd) strain with an innate ability to produce melatonin, gibberellin (GA3), Indole-3-Acetic Acid (IAA), and organic acids (i.e., acetic, succinic, lactic, and propionic acids). Soybean plants at 20 days old were treated with KJW143 in a different form (pellet, broth, and together) and their effect on plant performance was investigated. Inoculation with KJW143enhanced plant biomass and growth attributes in soybean plants compared to the control (non-treated). In particular, we observed that only pellet-treated showed 65%, 27.5%, and 28.7% increase in growth (shoot fresh weight) compared to broth, broth with pellet, and control. In addition, bacterial strain KJW143 treatment (only pellet) modulated the physiochemical apparatus of soybean plants by increasing glucose (390%), arabinose (166%), citric acid (22.98%) and reducing hydrogen peroxide (29.7%), catalase (32.1%), salicylic acid (25.6%) compared to plants with combined stressed plants (cd and salinity). These findings suggest that bacterial strain KJW143 could be usedas a biofertilizer to minimize the probable risk of heavy metal and salinity stress on crops.

  • PDF

Physicochemical properties, phytochemicals, and biological activities of heat-treated Elaeagnus multiflora juice and vinegar (열처리 보리수 과즙과 식초의 이화학적 특성, phytochemicals 및 생리활성)

  • Cho, Kye Man;Hwang, Chung Eun;Kim, Su Cheol;Jo, Ok Soo
    • Food Science and Preservation
    • /
    • v.25 no.1
    • /
    • pp.52-61
    • /
    • 2018
  • In this study, vineger was produced after heat treatment of Elaeagnus multiflora juice and its fermentative characteristics were investigated. The heat-treated juice and vinegar of E. multiflora were similar in fruit color, with b values (redness) of 39.48 (juice) and 37.56 (vinegar). After 10 days of fermentation of E. multiflora fruit, the acetic acid bacteria viable cell number, pH, acidity, reducing sugar content, and alcohol content were 4.59-4.62 log CFU/mL, 3.14-3.45, 0.2-2.12%, 0.69-35.24 mg/mL, and 0.2%, respectively. The heat-treated juice and vinegar showed significantly higher radical scavenging and digestive enzyme inhibitory activities than untreated samples, and the levels of soluble phenolics, soluble flavonoids, flavan-3-ol derivatives, and phenolic and derivatives were increased. Additioinally, the heat-treated vinegar contained major organic acids, such as acetic acid (21.82 mg/mL), and major flavan-3-ols and phenolic acids, such as catechin ($72.24{\mu}g/mL$), catechin gallate ($273.36{\mu}g/mL$), epigallocatechin gallate ($68.35{\mu}g/mL$), protocatechuic acid ($12.84{\mu}g/mL$), and salicylic acid ($42.29{\mu}g/mL$). At $25{\mu}L/mL$ treatment, DPPH and ABTS radical scavenging activities and ${\alpha}$-glucosidase and pancreatic lipase inhibitory activities were 79.66%, 93.99%, 90.12%, and 64.85%, respectively. This result suggested that it is possible to produce new types of vinegar and beverages, using heat-treated E. multiflora juice.

CaWRKY2, a Chili Pepper Transcription Factor, Is Rapidly Induced by Incompatible Plant Pathogens

  • Oh, Sang-Keun;Yi, So Young;Yu, Seung Hun;Moon, Jae Sun;Park, Jeong Mee;Choi, Doil
    • Molecules and Cells
    • /
    • v.22 no.1
    • /
    • pp.58-64
    • /
    • 2006
  • WRKY family proteins are a class of plant-specific transcription factors involved in stress response signaling pathways. In this study a gene encoding a putative WRKY protein was isolated from a pepper EST database (http://genepool.kribb.re.kr). The cDNA, named Capsicum annuum WRKY2 (CaWRKY2), encodes a putative polypeptide of 548 amino acids, containing two WRKY domains with zinc finger motifs and two potential nuclear localization signals. Northern blot analyses showed that CaWRKY2 mRNA was preferentially induced during incompatible interactions of pepper plants with PMMoV, Pseudomonas syringae pv. syringae 61, and Xanthomonas axonopodis pv. vesicatoria race 3. Furthermore, CaWRKY2 transcripts were strongly induced by wounding and ethephon treatment, whereas only moderate expression was detected following treatment with salicylic acid and jasmonic acid. CaWRKY2 was translocated to the nucleus when a CaWRKY2-smGFP fusion construct was expressed in onion epidermal cells. CaWRKY2 also had transcriptional activation activity in yeast. Taken together our data suggest that CaWRKY2 is a pathogen-inducible transcription factor that may have a role in early defense responses to biotic and abiotic stresses.