• Title/Summary/Keyword: sagging bending moment

Search Result 13, Processing Time 0.026 seconds

Nonlinear effect on wave loads of large ships in time domain

  • Kim, Mun-Sung;Park, Jong-Jin;Kim, Byung-Woo;Eom, Jae-Kwang
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.3 no.1
    • /
    • pp.95-104
    • /
    • 2011
  • As sea state harsher in the ocean space, more large motion and wave loads occurs on ships hull by non-linear phenomena. To consider nonlinear effect on ships hull in the structural design verification, the direct calculation method with numerical approach is used rather than rule values for the reliable accuracy. In this paper, the non-linear wave loads analysis in time domain is performed by using a Rankine Panel Method together with numerical schemes. Linear calculations have been carried out based on DNV CSA-2 notation to generate the motion responses and wave loads of large ships. By short and long term analysis, the design wave amplitudes are selected for the nonlinear analysis. The maximum wave induced bending moment in hogging and sagging conditions are calculated in the nonlinear analysis. Also, the green water effect on the wave induced vertical bending moment was investigated. The results show the vertical bending moments are more influenced by green water in sagging condition than in hogging condition due to green water loading.

A Study on the Numerical Analysis Methods for Predicting Strength Test Result of Box Girder under Bending Moment (휨 모멘트를 받는 박스거더 구조 강도 실험에 대한 수치해석 방법에 관한 연구)

  • Myung-Su Yi;Joo-Shin Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.5
    • /
    • pp.488-496
    • /
    • 2023
  • Ship and bridge structures are a type of long box-shaped structure, and resistance to vertical bending moment is a key factor in their structural design. In particular, because box girders are repeatedly exposed to irregular wave loads for a long time, the continuous collapse behavior of structural members must be accurately predicted. In this study, plastic collapse behavior, including buckling according to load changes of the box girder receiving pure bending moments, was analyzed using a numerical analysis method. The analysis targets were selected as three box girders used in the Gordo experiment. The cause of the difference was considered by comparing the results of the structural strength experiment with those of non-linear finite element analysis. This study proposed a combination of the entire and local sagging shape to reflect the effect of the initial sagging caused by welding heat that is inevitably used to manufacture carbon steel materials. The procedures reviewed in the study and the contents of the initial sagging configuration can be used as a good guide for analyzing the final strength of similar structures in the future.

Study on mechanical performance of composite beam with innovative composite slabs

  • Yang, Yong;Yu, Yunlong;Zhou, Xianwei;Roeder, Charles W.;Huo, Xudong
    • Steel and Composite Structures
    • /
    • v.21 no.3
    • /
    • pp.537-551
    • /
    • 2016
  • A new type of composite beam which consists of a wide flange steel shape beam and an innovative type of composite slab was introduced. The composite slab is composed of concrete slab and normal flat steel plates, which are connected by perfobond shear connectors (PBL shear connectors). This paper describes experiments of two large-scale specimens of that composite beam. Both specimens were loaded at two symmetric points for 4-point loading status, and mechanical behaviors under hogging and sagging bending moments were investigated respectively. During the experiments, the crack patterns, failure modes, failure mechanism and ultimate bending capacity of composite beam specimens were investigated, and the strains of concrete and flat steel plate as well as steel shapes were measured and recorded. As shown from the experimental results, composite actions were fully developed between the steel shape and the composite slab, this new type of composite beams was found to have good mechanical performance both under hogging and sagging bending moment with high bending capacity, substantial flexure rigidity and good ductility. It was further shown that the plane-section assumption was verified. Moreover, a design procedure including calculation methods of bending capacity of this new type of composite beam was studied and proposed based on the experimental results, and the calculation methods based on the plane-section assumption and plastic theories were also verified by comparisons of the calculated results and experimental results, which were agreed with each other.

Shear behavior and shear capacity prediction of precast concrete-encased steel beams

  • Yu, Yunlong;Yang, Yong;Xue, Yicong;Liu, Yaping
    • Steel and Composite Structures
    • /
    • v.36 no.3
    • /
    • pp.261-272
    • /
    • 2020
  • A novel precast concrete-encased steel composite beam, which can be abbreviated as PCES beam, is introduced in this paper. In order to investigate the shear behavior of this PCES beam, a test of eight full-scale PCES beam specimens was carried out, in which the specimens were subjected to positive bending moment or negative bending moment, respectively. The factors which affected the shear behavior, such as the shear span-to-depth aspect ratio and the existence of concrete flange, were taken into account. During the test, the load-deflection curves of the test specimens were recorded, while the crack propagation patterns together with the failure patterns were observed as well. From the test results, it could be concluded that the tested PCES beams could all exhibit ductile shear behavior, and the innovative shear connectors between the precast concrete and cast-in-place concrete, namely the precast concrete transverse diaphragms, were verified to be effective. Then, based on the shear deformation compatibility, a theoretical model for predicting the shear capacity of the proposed PCES beams was put forward and verified to be valid with the good agreement of the shear capacities calculated using the proposed method and those from the experiments. Finally, in order to facilitate the preliminary design in practical applications, a simplified calculation method for predicting the shear capacity of the proposed PCES beams was also put forward and validated using available test results.

Analytical study of composite steel-concrete beams with external prestressing

  • Turini, Thiago T.;Calenzani, Adenilcia F.G.
    • Structural Engineering and Mechanics
    • /
    • v.82 no.5
    • /
    • pp.595-609
    • /
    • 2022
  • Prestressed composite steel-concrete beams are still a technology restricted to repair sites of large-scale structures and spans. One of the reasons for that is the absence of standard frameworks and publications regarding their design and implementation. In addition, the primary normative codes do not address this subject directly, which might be related to a scarcity of papers indicating methods of design that would align the two technics, composite beams and external prestressing. In this context, this paper proposes methods to analyze the sizing of prestressed composite beams submitted to pre-tension and post-tension with a straight or polynomial layout cable. This inquiry inspected a hundred and twenty models of prestressed composite beams according to its prestressing technology and the eccentricity and value of the prestressing force. The evaluation also included the ratio between span and height of the steel profile, thickness and typology of the concrete slab, and layout of the prestressing cables. As for the results, it was observed that the eccentricity of the prestressing force doesn't significantly influence the bending resistance. In prestressed composite beams subjected to a sagging moment, the ratio L/d can reach 35 and 30 for steel-concrete composite slabs and solid concrete slabs, respectively. Considering the negative bending moment resistance, the value of the L/d ratio must be less than or equal to 25, regardless of the type of slab. When it comes to the value of the prestressing force, a variation greater than 10% causes a 2.6% increase in the positive bending moment resistance and a 4% decrease in the negative bending moment resistance. The pre-tensioned composite beams showed a superior response to flexural-compression and excessive compression limit states than the post-tensioned ones.

Non linear soil structure interaction of space frame-pile foundation-soil system

  • Chore, H.S.;Ingle, R.K.;Sawant, V.A.
    • Structural Engineering and Mechanics
    • /
    • v.49 no.1
    • /
    • pp.95-110
    • /
    • 2014
  • The study deals with physical modeling of space frame-pile foundation and soil system using finite element models. The superstructure frame is analyzed using complete three-dimensional finite element method where the component of the frame such as slab, beam and columns are descretized using 20 node isoparametric continuum elements. Initially, the frame is analyzed assuming the fixed column bases. Later the pile foundation is worked out separately wherein the simplified models of finite elements such as beam and plate element are used for pile and pile cap, respectively. The non-linear behaviour of soil mass is incorporated by idealizing the soil as non-linear springs using p-y curve along the lines similar to that by Georgiadis et al. (1992). For analysis of pile foundation, the non-linearity of soil via p-y curve approach is incorporated using the incremental approach. The interaction analysis is conducted for the parametric study. The non-linearity of soil is further incorporated using iterative approach, i.e., secant modulus approach, in the interaction analysis. The effect the various parameters of the pile foundation such as spacing in a group and configuration of the pile group is evaluated on the response of superstructure owing to non-linearity of the soil. The response included the displacement at the top of the frame and bending moment in columns. The non-linearity of soil increases the top displacement in the range of 7.8%-16.7%. However, its effect is found very marginal on the absolute maximum moment in columns. The hogging moment decreases by 0.005% while sagging moment increases by 0.02%.

Analysis of demountable steel and composite frames with semi-rigid bolted joints

  • Wang, Jia;Uy, Brian;Li, Dongxu
    • Steel and Composite Structures
    • /
    • v.28 no.3
    • /
    • pp.363-380
    • /
    • 2018
  • This paper presented an integral design procedure for demountable bolted composite frames with semi-rigid joints. Moment-rotation relationships of beam-to-column joints were predicted with analytical models aiming to provide accurate and reliable analytical solutions. Among this, initial stiffness of beam-to-column joints was derived on the basis of Timoshenko's plate theory, and moment capacity was derived in accordance with Eurocodes. The predictions were validated with relevant test results prior to further applications. Frame analysis was conducted by using Abaqus software with material and geometrical nonlinearity considered. Variable lateral loads incorporating wind actions and earthquake actions in accordance with Australian Standards were adopted to evaluate the flexural behaviour of the composite frames. Strength and serviceability limit state criteria were utilized to verify configurations of designed models. A wide range of frames with the varied number of storeys and bays were thereafter programmed to ascertain bending moment envelopes under various load combinations. The analytical results suggest that the proposed approach is capable of predicting the moment-rotation performance of the semi-rigid joints reasonably well. Outcomes of the frame analysis indicate that the load combination with dead loads and live loads only leads to maximum sagging and hogging moment magnitudes in beams. As for lateral loads, wind actions are more crucial to dominate the design of the demountable composite frames than earthquake actions. No hogging moment reversal is expected in the composite beams given that the frames are designed properly. The proposed analysis procedure is demonstrated to be a simple and efficient method, which can be applied into engineering practice.

Comparative analysis among deterministic and stochastic collision damage models for oil tanker and bulk carrier reliability

  • Campanile, A.;Piscopo, V.;Scamardella, A.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.1
    • /
    • pp.21-36
    • /
    • 2018
  • The incidence of collision damage models on oil tanker and bulk carrier reliability is investigated considering the IACS deterministic model against GOALDS/IMO database statistics for collision events, substantiating the probabilistic model. Statistical properties of hull girder residual strength are determined by Monte Carlo simulation, based on random generation of damage dimensions and a modified form of incremental-iterative method, to account for neutral axis rotation and equilibrium of horizontal bending moment, due to cross-section asymmetry after collision events. Reliability analysis is performed, to investigate the incidence of collision penetration depth and height statistical properties on hull girder sagging/hogging failure probabilities. Besides, the incidence of corrosion on hull girder residual strength and reliability is also discussed, focussing on gross, hull girder net and local net scantlings, respectively. The ISSC double hull oil tanker and single side bulk carrier, assumed as test cases in the ISSC 2012 report, are taken as reference ships.

In-plane structural analysis of blind-bolted composite frames with semi-rigid joints

  • Waqas, Rumman;Uy, Brian;Wang, Jia;Thai, Huu-Tai
    • Steel and Composite Structures
    • /
    • v.31 no.4
    • /
    • pp.373-385
    • /
    • 2019
  • This paper presents a useful in-plane structural analysis of low-rise blind-bolted composite frames with semi-rigid joints. Analytical models were used to predict the moment-rotation relationship of the composite beam-to-column flush endplate joints that produced accurate and reliable results. The comparisons of the analytical model with test results in terms of the moment-rotation response verified the robustness and reliability of the model. Abaqus software was adopted to conduct frame analysis considering the material and geometrical non-linearities. The flexural behaviour of the composite frames was studied by applying the lateral loads incorporating wind and earthquake actions according to the Australian standards. A wide variety of frames with a varied number of bays and storeys was analysed to determine the bending moment envelopes under different load combinations. The design models were finalized that met the strength and serviceability limit state criteria. The results from the frame analysis suggest that among lateral loads, wind loads are more critical in Australia as compared to the earthquake loads. However, gravity loads alone govern the design as maximum sagging and hogging moments in the frames are produced as a result of the load combination with dead and live loads alone. This study provides a preliminary analysis and general understanding of the behaviour of low rise, semi-continuous frames subjected to lateral load characteristics of wind and earthquake conditions in Australia that can be applied in engineering practice.

Analysis on the Structual Response of Ship Structures Subjected to Slamming Impact (Slamming충격으로 인한 선체의 구조적 응답해석)

  • Goo, Ja-Sam;Hong, Bong-Ki
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.21 no.1
    • /
    • pp.67-74
    • /
    • 1985
  • This paper describes a method for evaluating the vertical hull girder vibratory response associated with slamming of a ship at sea. The ship hull is considered as a nonuniform beam divided into twenty equal sections. Impact forces and structural parameters are used as input quantities on the computer (PRIME 550-II) to obtain the hull girder response in terms of relative displacements, accelerations, bending moments, shear forces, and stresses. Sample calculations are made on a MARINER-Class hull form using first three modes and again using first ten modes and again using first ten modes. The computed response is compared with Antonides's result in order to evaluate the adequacy of the method employed. It is believed that the method is another noticeable one to obtain whipping stresses of a ship to a seaway.

  • PDF