• Title/Summary/Keyword: sagA

Search Result 562, Processing Time 0.022 seconds

NEW ADAPTIVE METHOD FOR VOLTAGE SAG AND SWELL DETECTION

  • Mohamed, Mansour A.
    • Journal of the Korea Convergence Society
    • /
    • v.4 no.1
    • /
    • pp.33-41
    • /
    • 2013
  • This paper presents an adaptive recursive least squares algorithm (ARLS) for detecting voltage sag and voltage swell events in power systems. Different methods have been developed to detect voltage sag and voltage swell. Some of them use window techniques, which are too slow when voltage sag or swell mitigation is required. Others depend on the extraction of a single non-stationary sinusoidal signal out of a given multi-components input signal, and therefore they don't consider the harmonic components in calculating the voltage root mean square value (rms). The method, proposed in this paper, is capable of estimating the voltage rms taking into account all harmonic components. The method is tested by applying it to different, simulated signals using ATP program, and compared with voltage sag detection algorithms.

Countermeasure of Voltage Sag in Radial Power Distribution System using Load Transfer Switching (부하 절환 스위칭을 이용한 방사상 배전계통에서의 순간전압강하 대책)

  • Yun, Sang-Yun;Oh, Jung-Hwan;Kim, Jae-Chul
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.11
    • /
    • pp.558-565
    • /
    • 2000
  • In this paper, we propose a method for mitigating for mitigating the effect of voltage of voltage sag in radial power distribution systems using load transfer switching (LTS). The term of LTS is defined that the weakness load points for voltage sag transfer to the alternative source during the fault clearing practices. The sequenced of proposed LTS method is divided into the search of weakness points for voltage sag using the risk assessment model and transfer behavior of weakness points. The search of weakness point is carried out using the risk assessment model of voltage sag and Monte Carlo simulation method and the historical reliability data in Korea Electric Power Corporation (KEPCO) are also used. Through the case studies, we verify the effectiveness of proposed LTS method and present the searching method of effective application points of LTS method using the risk assessment model.

  • PDF

An Assessment Method for Voltage Sag in Power Distribution System using a Fuzzy Model (퍼지 모델을 이용한 배전 계통에서의 순간전압강하 평가 방식)

  • Yun, Sang-Yun;O, Jeong-Hwan;Kim, Eon-Seok;Kim, Nak-Gyeong;Kim, Jae-Cheol
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.4
    • /
    • pp.177-184
    • /
    • 2000
  • In this paper, we proposes a method for assessing the effect of voltage sag in power distribution systems using fuzzy model. The proposed method is based on the reliability data of distribution system and specified computer business equipment manufacturer association(SCBEMA) curve that express the representative power acceptability curve by voltage sag for each customer type. The SCBEMA curves are made by using the CBEMA curves obtained from the experiment for the customers sensitive equipment. In order to transform SCBEMA curves to the differential damage by voltage sag, a fuzzy model is used. The proposed fuzzy model is composed to reflect two parameters of customers damage by voltage sag. One is the duration and magnitude of voltage sag and the other is the different risk due to the customer types. The Monte Carlo simulation method and the historical reliability data in KEPCO ae used for case studies.

  • PDF

Development and Clinical Evaluation of a Rapid Serodiagnostic Test for Toxoplasmosis of Cats Using Recombinant SAG1 Antigen

  • Chong, Chom-Kyu;Jeong, Woo-Seog;Kim, Hak-Yong;An, Dong-Jun;Jeoung, Hye-Young;Ryu, Jeong-Eun;Ko, A-Ra;Kim, Yong-Joo;Hong, Sung-Jong;Yang, Zhaoshou;Nam, Ho-Woo
    • Parasites, Hosts and Diseases
    • /
    • v.49 no.3
    • /
    • pp.207-212
    • /
    • 2011
  • Rapid serodiagnostic methods for Toxoplasma gondii infection in cats are urgently needed for effective control of transmission routes toward human infections. In this work, 4 recombinant T. gondii antigens (SAG1, SAG2, GRA3, and GRA6) were produced and tested for the development of rapid diagnostic test (RDT). The proteins were expressed in Escherichia coli, affinity-purified, and applied onto the nitrocellulose membrane of the test strip. The recombinant SAG1 (rSAG1) showed the strongest antigenic activity and highest specificity among them. We also performed clinical evaluation of the rSAG1-loaded RDT in 182 cat sera (55 household and 127 stray cats). The kit showed 0.88 of kappa value comparing with a commercialized ELISA kit, which indicated a significant correlation between rSAG1-loaded RDT and the ELISA kit. The overall sensitivity and specificity of the RDT were 100% (23/23) and 99.4% (158/159), respectively. The rSAG1-loaded RDT is rapid, easy to use, and highly accurate. Thus, it would be a suitable diagnostic tool for rapid detection of antibodies in T. gondii-infected cats under field conditions.

A Simulation and Analysis of Voltage Sag Phenomena Using EMTP (EMTP를 이용한 Voltage Sag 현상 모의 및 고찰)

  • Kim, Y.K.;Kim, C.H.;Lee, T.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.128-130
    • /
    • 2003
  • In recent years, both utilities and users have expressed their deep concerns about the quality of electric power. Expressed, voltage sag which is one of power quality disturbance is very serious power quality problem on the power system. Voltage sag is a decrease to between 0.1 and 0.9 pu in rms voltage magnitude on the power system for durations from 0.5 cycles to 1 minute. These voltage sags are usually caused by fault condition, overload, and starting of large motors. In this paper, different types of voltage sags are simulated by using EMTP. This paper describes the distinctive characteristic for various sag origins, proposes the effective technique for voltage sag detection using EMTP.

  • PDF

Impact of cable sag on the efficiency of an inertial mass damper in controlling stay cable vibrations

  • Wang, Zhi-hao;Gao, Hui;Xu, Yan-wei;Chen, Zheng-qing;Wang, Hao
    • Smart Structures and Systems
    • /
    • v.24 no.1
    • /
    • pp.83-94
    • /
    • 2019
  • Passive negative stiffness dampers (NSDs) that possess superior energy dissipation abilities, have been proved to be more efficient than commonly adopted passive viscous dampers in controlling stay cable vibrations. Recently, inertial mass dampers (IMDs) have attracted extensive attentions since their properties are similar to NSDs. It has been theoretically predicted that superior supplemental damping can be generated for a taut cable with an IMD. This paper aims to theoretically investigate the impact of the cable sag on the efficiency of an IMD in controlling stay cable vibrations, and experimentally validate superior vibration mitigation performance of the IMD. Both the numerical and asymptotic solutions were obtained for an inclined sag cable with an IMD installed close to the cable end. Based on the asymptotic solution, the cable attainable maximum modal damping ratio and the corresponding optimal damping coefficient of the IMD were derived for a given inertial mass. An electromagnetic IMD (EIMD) with adjustable inertial mass was developed to investigate the effects of inertial mass and cable sag on the vibration mitigation performance of two model cables with different sags through series of first modal free vibration tests. The results show that the sag generally reduces the attainable first modal damping ratio of the cable with a passive viscous damper, while tends to increase the cable maximum attainable modal damping ratio provided by the IMD. The cable sag also decreases the optimum damping coefficient of the IMD when the inertial mass is less than its optimal value. The theoretically predicted first modal damping ratio of the cable with an IMD, taking into account the sag generally, agrees well with that identified from experimental results, while it will be significantly overestimated with a taut-cable model, especially for the cable with large sag.

Development of Sag and Tension Sensitivity Estimation Method for Configuration Control under PPWS Erection in a Suspension Bridge (현수교 PPWS 가설중 형상관리를 위한 PPWS 새그 및 장력민감도 산정법 개발)

  • Jeong, Woon;Seo, Ju Won;Lee, Won Pyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5A
    • /
    • pp.255-266
    • /
    • 2012
  • Main cable of a suspension bridge is the important member which shows the overall structure integrity at bridge completion. Configuration of main cable is a free hanging state at cable erection completion and is different from that at bridge completion supporting the dead loads such as hanger, girder, and so on. Accordingly, the configuration control under cable erection is considerably significant because the configuration at cable erection completion has direct influence on that at bridge completion. That is performed by sag adjustments at center, side span and tension adjustments at anchor span. The former needs the sag sensitivity which represents the control quantity of strand length corresponding to that of sag. The latter requires the tension sensitivity which shows the change of strand tension according to that of strand temperature. In this study, the fundamental equations of cable were derived with the assumption of either catenary or parabola shape, the differential-related equations using chain rule on horizontal tension were drawn from those and finally the estimation methods of the sag / tension sensitivity were proposed from both those. The nonlinear numerical analysis flow charts of sag sensitivity based on the catenary equations were proposed and the sag sensitivities grounded on the differential-related equations were compared with the results using them for various parameters of sag change. Also, considering the combinations of sag change parameters, the calculation method of the final variation for the cable sag was suggested. For the real suspension bridge under construction with PPWS method, the sag/tension sensitivity were estimated considering the construction conditions like the change of PPWS length, PPWS temperature, bridge span, etc.. We hope that this study will be a systematic guideline for the configuration control under main cable erection and improved highly by field verification in the real bridge site.

Stochastic Estimation of Voltage Sags Based on Voltage Monitoring (전압 모니터링에 기반한 순간전압강하 확률적 추계 방법)

  • Son, Jeongdae;Park, Chang-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.10
    • /
    • pp.1271-1277
    • /
    • 2018
  • This paper deals with a voltage sag assessment based on a voltage monitoring program. The voltage sag performance at a specific site can be evaluated by analyzing voltage monitoring data recorded for a long time period. Although an assessment based on voltage monitoring is an effective way to understand voltage sag performance at a measurement site, the statistical confidence of voltage sag frequency estimation heavily depends on the length of monitoring period and the number of recorded events. Short monitoring period and insufficient recorded data can not provide a reliable assessment result. This paper proposes a compensation assessment method by combining a computer simulation approach for in case that monitoring period and data are not enough for a valid assessment.

Fast Detection Algorithm for Voltage Sags and Swells Based on Delta Square Operation for a Single-Phase Inverter System

  • Lee, Woo-Cheol;Sung, Kook-Nam;Lee, Taeck-Kie
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.157-166
    • /
    • 2016
  • In this paper, a new sag and peak voltage detector is proposed for a single-phase inverter using delta square operation. The conventional sag detector is from a single-phase digital phase-locked loop (DPLL) that is based on d-q transformations using an all-pass filter (APF). The d-q transformation is typically used in the three-phase coordinate system. The APF generates a virtual q-axis voltage component with a 90° phase delay, but this virtual phase cannot reflect a sudden change in the grid voltage at the instant the voltage sag occurs. As a result, the peak value is drastically distorted, and it settles down slowly. A modified APF generates the virtual q-axis voltage component from the difference between the current and the previous values of the d-axis voltage component in the stationary reference frame. However, the modified APF cannot detect the voltage sag and peak value when the sag occurs around the zero crossing points such as 0° and 180°, because the difference voltage is not sufficient to detect the voltage sag. The proposed algorithm detects the sag voltage through all regions including the zero crossing voltage. Moreover, the exact voltage drop can be acquired by calculating the q-axis component that is proportional to the d-axis component. To verify the feasibility of the proposed system, the conventional and proposed methods are compared using simulations and experimental results.

Experimental Verification of Sag Sensitivities using Catenary Model for PPWS Configuration Control in a Suspension Bridge (모형 현수선을 이용한 현수교 PPWS 형상관리를 위한 새그민감도의 실험적 검증)

  • Jeong, Woon;Seo, Ju Won;Lee, Sung Hyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.711-721
    • /
    • 2014
  • PPWS, a large number of which a main cable of a suspension bridge consists of, must be precisely erected at a target location under construction considering the differences among design conditions. The absolute sag is measured for several PPWSs, which are reference strands and the relative sag is surveyed from them to other PPWSs, which are divided into several groups. And the adjustment of PPWS length is performed to erect it at target configuration. When PPWS is being under erection in a real bridge site, the procedures are as follows; evaluate sag sensitivities according to sag variation factors, calculate an adjustment length of PPWS corresponding to them and adjust a sag of PPWS by controlling the calculated amount of PPWS length. In this study, the differential-related equations of sag sensitivity were proposed for support movement of PPWS. Before site demonstration study of a series of them, we established a catenary model system and accomplished verification tests of them. From test results, the validation of them was done.