• Title/Summary/Keyword: safflower seed fraction extract

Search Result 5, Processing Time 0.019 seconds

The biologic effects of safflower(Carthamus tinctorius $Linn\acute{e}$) extract and Dipsasi Radix extract on periodontal ligament cells and osteoblastic cells (홍화 추출물이 치주인대세포, 조골세포 활성도에 미치는 영향)

  • Rhyu, In-Chul;Lee, Yong-Moo;Ku, Young;Bae, Ki-Whan;Chung, Chong-Pyoung
    • Journal of Periodontal and Implant Science
    • /
    • v.27 no.4
    • /
    • pp.867-882
    • /
    • 1997
  • Safflower(Carthamus tinctorius $Linn\acute{e}$ has been traditionally used for the treatment of blood stasis, and Dipsasi Radix has been used as a drug for fracture in Chinese medicine. The purpose of present study was to examine the biologic effects of safflower extract and Disasi radix extracts on the periodontal. ligament cells and osteoblastic cells and on the wound healing of rat calvarial defect. The ethanolic extract of safflower blossom, safflower seed and Dipsasi Radix(125, 250, and 500 ${\mu}g/ml$) were prepared as test group, and PDGF-BB(lOng/ml) and unsafonifiable fraction of Zea Mays L.(125, 250, and 500 ${\mu}g/ml$) were employed as positive control. The effects of each agents on the growth and survival, ALPase activity, expression of PDGF-BB receptor, chemotactic response of PDL cell and ATCC human osteosarcoma MG63 cells in vitro were examined. The tissue regenerative effect of each extracts was evaluated by histomorphometric measuring of newly formed bone on the 8mm defect in rat calvaria after oral administration of 3 different dosages groups : 0.02, 0.1 and 0.35g/kg, per day. It was also employed the same dosages of unsaponifiable fraction of Zea Mays L. as positive controls. Safflower blossom extract, safflower seed extract, and Dipsasi Radix extract stimulate the cellular activity of MG63 cells in concentration range of $125-500{\mu}g/ml$, and safflower bolssom extract and safflower seed extract stimulate also the cellular activity of periodontal ligament cells in concentration range of $250-500{\mu}g/ml$. In activity of ALPase, $250-500{\mu}g/ml$ of safflower blossom extracts showed significant stimulating effects on MG63 cells, and the same concentration range of safflower seed extracts showed significant effect on periodontal ligament cells. In the recovery on PDGF-BB receptor expression which was depressed by $IL-1{\beta}$, $125-250{\mu}g/ml$ of safflower blossom extracts and $250-500{\mu}g/ml$ of safflower seed extracts showed significant increasing effect on MG63 cells, and $500{\mu}g/ml$ of safflower blossom extract and $250-500{\mu}g/ml$ of safflower seed extracts showed significant effect on periodontal ligament cells. In chemotactic response, among all tested group, safflower seed extracts only were chemotactic to MG63 cells and periodontal ligament cells in concentration range of $125-500{\mu}g/ml$. Also in the view of bone regeneration in rat calvarial defect model, the only group that was orally administrated 0.35g/kg, day of safflower seed extract showed significant new bone formation. These results suggested that safflower extracts might have a potential possibilities as an useful drug for adjunct to treatment for regeneration of periodontal defect.

  • PDF

The effect of safflower seed fraction extract on periodontal ligament fibroblast and MC3T3-E1 cell in vitro (홍화씨 분획 추출물이 치주인대 섬유아세포와 MC3T3-E1 세포에 미치는 영향)

  • Huh, Ji-Sun;Kang, Jung-Hwa;Yoo, Yun-Jung;Kim, Chang-Sung;Cho, Kyoo-Sung;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.31 no.4
    • /
    • pp.833-846
    • /
    • 2001
  • Recently, use of natural medicine is getting more attention, and some of them are believed to be effective in the treatment of periodontitis. Among them, the seeds of safflower(Carthamus tinctrorius L.) have been proven to be effective through its use in bone diseases such as fracture and osteoporosis. During the last few years, studies using the seeds of safflower gown in Korea have been active, and it has been reported that safflower seed extract increase the proliferation and the alkaline phosphatase(ALP) activity of human periodontal ligament fibroblast(hPDLF), osteoblast, and that they promote the mineralization process. In animal studies, when safflower seed extract were administered orally new bone formation was promoted. Recently, in an effort to find out the most effective osteogenic components, among many components of the safflower seed, various safflower seed fraction extracts were obtained by multistep extraction of the safflower components using various solvents. Among these, saf-M-W fraction extracted by methanol and water was most effective in increasing osteogenic potential of osteoblasts. In this study, the effect of safflower seed fraction extract, saf-M-W, on the growth and differentiation of hPDLF and MC3T3-E1 cell was investigated. The toxicity of saf-M-W on both cells was measured using M'IT(3-(4,5dimethylthiazol-2-y1)-2,5-diphenyl tetrazolium bromide) test, and ALP activity was measured using the colorimetric assay of hPDLF. In addition, in MC3T3-El cells, the expression of ALP, bone sialoprotein(BSP) mRNA was observed using Northern blot, and the mineralized nodule formation Was observed using von Kossa stain and phase-contrast microscope. 1. In concentrations below $10{\mu}g/ml$, saf-M-W didn't show any toxicity on hPDLF and MC3T3-El cell. 2. The change in saf-M-W concentration had no effect on the ALP activity of hPDLF. 3. In MC3T-E1 cells, mRNA expressions of ALP and BSP were greater in the experimental group treated with $10{\mu}g/ml$ concentration of saf-M-W compared with the control group. 4. In MC3T3-El cells, abundance of mineralized nodules were formed in the experimental group treated with $10{\mu}g/ml$ Concentration of saf-M-W, while no mineralized nodule was formed in the control group. These results suggest that safflower seed fraction extract, saf-M-W. didn't show any toxicity on hPDLF and MC3T3-E1 cell at concentrations below $10{\mu}g/ml$ and effectively enhanced the differentiation and osteogenic potential of MC3T3-El cell.

  • PDF

Effect of Extracts from Safflower Seeds on Osteoblastic Differentiation and Intracellular Free Calcium Concentration in MC3T3-El Cells

  • Jang, Hye-Ock;Eom, Hyun-Sup;Roh, Sung-Bae;Yun, ll
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.1
    • /
    • pp.55-62
    • /
    • 2005
  • Very little research has been carried out on safflower seed for the prevention and treatment of the bone deficiency diseases, including osteoporosis, which are supported by scientific evidences. In the present study, $3{\mu}l$ of 0.1% dried crude extract or $2{\mu}l$ of 0.1% dried aqueous fraction were shown to significantly accelerate the rate of differentiation of osteoblast. Also, the crude extract and aqueous fraction increased the $[Ca^{2+}]_i$ of the cultured osteoblast cells: $3{\mu}l$ of 0.1% dried crude extract and $2{\mu}l$ of 0.1% dried aqueous fraction significantly increased the $[Ca^{2+}]_i$ of the cultured osteoblast cells ($8{\times}10^{-4}$) to the extent that it deserves a considerable attention. Furthermore, the crude extract and aqueous fraction increased the $[Ca^{2+}]_i$ of the cultured osteoblast cells, and $300{\mu}M$ $Cd^{2+}$, specific calcium channel blocker, completely blocked the increase. Therefore, the increased $[Ca^{2+}]_i$ of the cultured osteoblast cells by safflower seed component continued to activate calcium channel.

Supplementation of Safflower Seed Powder and Extracts Enhances Bone Metabolism in Rib-Fractured Rats

  • Seo, Hyun-Ju;Moon, Kwang-Deog;Jeon, Seon-Min;Kim, Jun-Han;Cho, Myung-Sook
    • Preventive Nutrition and Food Science
    • /
    • v.8 no.1
    • /
    • pp.46-53
    • /
    • 2003
  • The current study investigated the effect of Korean safflower (Carthamus tinctorius L.) seed powder and its water and ethanol extracts on bone metabolism during recovery from rib-fracture induced by surgical operation in rats. 10-week-old male Sprague-Dawley rats weighing about 320 g were divided into 9 groups after arrival: 10d control (AIN 76 semi-purified diet), 10d safflower seed powder (10d SS-powder), 10d safflower seed ethanol extract (10d SS-EtOH), 10d safflower seed water extract (10d SS-$H_2O$), 20d control (AIN-76 semi-purified diet), 20d safflower heed powder (20d SS-powder), 20d safflower seed ethanol extract (20d SS-EtOH), 20d safflower seed water extract (20d SS-$H_2O$), and 20d sham-operation (20d sham), The dietary level for all the supplements was 5% based on the raw material weight. The rats were fed the experimental diets for 10 days before the rib fracture operation and for a further 10 or 20 days after the operation. A number 9 rib was fractured surgically and a sham-operation also performed. The rats were then sacrificed on the l0th or 20th day after the operation. The body weight initially decreased after the operation in all the rib-fractured groups, then gradually recovered. The concentrations of plasma osteocalcin were higher in the control group than in all the safflower-supplemented groups 10 and 20 days after the rib-fracture (p < 0.05). The bone-specific ALP (alkaline phosphatase) activity was significantly higher in the SS-EtOH group than in the other groups 20 days after the rib-fracture (p < 0.05). The level of urinary DPD (deoxypridinoline) was significantly higher in the SS-EtOH and SS-$H_2O$ groups than in the other groups 10 days after the rib-fracture. When comparing the PTH (parathyroid hormone) and calcitonin levels, the SS-$H_2O$ group exhibited the highest PTH level among the groups 10 and 20 days after the rib-fracture. Thus, it was concluded that the bone turnover during the fracture-healing period was more rapid in the rats supplemented with safflower seed powder or its fractions than in the control rats. Furthermore, the SS-$H_2O$ fraction was identified as the most effective in stimulating bone remodeling, as bone resorption and bone formation were both significantly increased during fracture healing when compared to the control group.