• Title/Summary/Keyword: safety work model

Search Result 671, Processing Time 0.026 seconds

A semi-supervised interpretable machine learning framework for sensor fault detection

  • Martakis, Panagiotis;Movsessian, Artur;Reuland, Yves;Pai, Sai G.S.;Quqa, Said;Cava, David Garcia;Tcherniak, Dmitri;Chatzi, Eleni
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.251-266
    • /
    • 2022
  • Structural Health Monitoring (SHM) of critical infrastructure comprises a major pillar of maintenance management, shielding public safety and economic sustainability. Although SHM is usually associated with data-driven metrics and thresholds, expert judgement is essential, especially in cases where erroneous predictions can bear casualties or substantial economic loss. Considering that visual inspections are time consuming and potentially subjective, artificial-intelligence tools may be leveraged in order to minimize the inspection effort and provide objective outcomes. In this context, timely detection of sensor malfunctioning is crucial in preventing inaccurate assessment and false alarms. The present work introduces a sensor-fault detection and interpretation framework, based on the well-established support-vector machine scheme for anomaly detection, combined with a coalitional game-theory approach. The proposed framework is implemented in two datasets, provided along the 1st International Project Competition for Structural Health Monitoring (IPC-SHM 2020), comprising acceleration and cable-load measurements from two real cable-stayed bridges. The results demonstrate good predictive performance and highlight the potential for seamless adaption of the algorithm to intrinsically different data domains. For the first time, the term "decision trajectories", originating from the field of cognitive sciences, is introduced and applied in the context of SHM. This provides an intuitive and comprehensive illustration of the impact of individual features, along with an elaboration on feature dependencies that drive individual model predictions. Overall, the proposed framework provides an easy-to-train, application-agnostic and interpretable anomaly detector, which can be integrated into the preprocessing part of various SHM and condition-monitoring applications, offering a first screening of the sensor health prior to further analysis.

Structural system identification by measurement error-minimization observability method using multiple static loading cases

  • Lei, Jun;Lozano-Galant, Jose Antonio;Xu, Dong;Zhang, Feng-Liang;Turmo, Jose
    • Smart Structures and Systems
    • /
    • v.30 no.4
    • /
    • pp.339-351
    • /
    • 2022
  • Evaluating the current condition of existing structures is of primary importance for economic and safety reasons. This can be addressed by Structural System Identification (SSI). A reliable static SSI depends on well-designed sensor configuration and loading cases, as well as efficient parameter estimation algorithms. Static SSI by the Measurement Error-Minimizing Observability Method (MEMOM) is a model-based deterministic static SSI method that could estimate structural parameters from static responses. In the current state of the art, this method is only applicable when structures are subjected to one loading case. This might lead to lack of information in some local regions of the structure (such as the null curvatures zones). To address this issue, the SSI by MEMOM using multiple loading cases is proposed in this work. Observability equations obtained from different loading cases are concatenated simultaneously and an optimization procedure is introduced to obtain the estimations by minimizing the discrepancy between the predicted response and the measured one. In addition, a Genetic-Algorithm (GA)-based Optimal Sensor Placement (OSP) method is proposed to tackle the OSP problem under multiple static loading cases for the very first time. In this approach, the Fisher Information Matrix (FIM)'s determinant is used as the metric of the goodness of sensor configurations. The numerical examples of a 3-span continuous bridge and a 13-story frame, are analyzed to validate the applicability of the extended SSI by MEMOM and the GA-based OSP method.

Development and verification of a Monte Carlo two-step method for lead-based fast reactor neutronics analysis

  • Yiwei Wu;Qufei Song;Ruixiang Wang;Yao Xiao;Hanyang Gu;Hui Guo
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2112-2124
    • /
    • 2023
  • With the rise of economic and safety standards for nuclear reactors, new concepts of Gen-IV reactors and modular reactors showed more complex designs that challenge current tools for reactor physics analysis. A Monte Carlo (MC) two-step method was proposed in this work. This calculation scheme uses the continuous-energy MC method to generate multi-group cross-sections from heterogeneous models. The multi-group MC method, which can adapt locally-heterogeneous models, is used in the core calculation step. This calculation scheme is verified using a Gen-IV modular lead-based fast reactor (LFR) benchmark case. The influence of homogenized patterns, scatter approximations, flux separable approximation, and local heterogeneity in core calculation on simulation results are investigated. Results showed that the cross-sections generated using the 3D assembly model with a locally heterogeneous representation of control rods lead to an accurate estimation with less than 270 pcm bias in core reactivity, 0.5% bias in control rod worth, and 1.5% bias on power distribution. The study verified the applicability of multi-group cross-sections generated with the MC method for LFR analysis. The study also proved the feasibility of multi-group MC in core calculation with local heterogeneity, which saves 85% time compared to the continuous-energy MC.

Planning and Establishment of Sejong City Smart City (세종시 스마트시티 구상 및 수립 방안)

  • Park, Jungsu;Jung, Hanmin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.161-163
    • /
    • 2021
  • This urban centralization is expected to develop rapidly, with 75% of the population living in the city by 2035. Large cities are becoming unsustainable due to side effects such as environmental pollution, severe traffic jams, excessive energy depletion, and destruction of the natural ecosystem. In addition, the happiness index of citizens of large cities is also falling because of high crime rates and safety accidents, the work-life imbalance caused by inequality and polarization, and overly competitive education. To solve this problem, Smart City, an IT-based future city model, was born. The Korean government is also actively attempting to improve urban competitiveness and promote sustainable development through efficient construction and operation of smart cities as a national focus project. To support the effort, we review the basic directions and strategies of Sejong City's Smart City service infrastructure based on the comprehensive national land plan, Smart City plan, and Smart City strategy plan.

  • PDF

Vulnerabilities and Attack Methods in Visible Light Communications Channel (가시광 통신 채널의 취약성 및 공격 방법)

  • Park, So-Hyun;Joo, Soyoung;Lee, Il-Gu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.469-471
    • /
    • 2021
  • As wireless communication technology advances to ensure high accuracy and safety at high speeds, research and development of Visible Light Communication (VLC) technology has been accelerated as an alternative to traditional radio frequency (RF) technology. As the radio spectrum of RF communication becomes more congested and demand for bandwidth continues to increase, VLCs that can use unlicensed frequency band are proposed as a solution. However, VLC channels have broadcasting characteristics that make them easily exposed to eavesdropping and jamming attacks, and are vulnerable to MITM (Man-In-The-Middle) due to their line of sight (LOS) propagation characteristics. These attacks on VLC channels compromise the confidentiality, integrity, and availability of communications links and data, resulting in higher data retransmission rates, reducing throughput and increasing power consumption, resulting in lower data transmission efficiency. In this work, we model vulnerable VLC channels to analyze the impact of attacks and communications vulnerabilities by malicious jammers.

  • PDF

Precast Segmental PSC Bridge Columns with Precast Concrete Footings : I. Development and Verification of System (조립식 기초부를 갖는 프리캐스트 세그먼트 PSC 교각 : I. 시스템 개발 및 검증)

  • Kim, Tae-Hoon;Park, Se-Jin;Kim, Young-Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4A
    • /
    • pp.395-405
    • /
    • 2009
  • The purpose of this study was to investigate the performance of precast segmental PSC bridge columns with precast concrete footings. The proposed system can reduce work at a construction site and makes construction periods shorter. The precast concrete footings is intended to support precast segmental PSC bridge columns and provides an alternative to current cast-inplace systems, particularly for areas where reduced construction time is desired. Shortened construction time, in turn, leads to important safety and economic advantages when traffic disruption or rerouting is necessary. A model of precast segmental PSC bridge columns was tested under a constant axial load and a cyclically reversed horizontal load. In the companion paper, the experimental and analytical study for the performance assessment of precast segmental PSC bridge columns with precast concrete footings is performed.

A novel analytical evaluation of the laboratory-measured mechanical properties of lightweight concrete

  • S. Sivakumar;R. Prakash;S. Srividhya;A.S. Vijay Vikram
    • Structural Engineering and Mechanics
    • /
    • v.87 no.3
    • /
    • pp.221-229
    • /
    • 2023
  • Urbanization and industrialization have significantly increased the amount of solid waste produced in recent decades, posing considerable disposal problems and environmental burdens. The practice of waste utilization in concrete has gained popularity among construction practitioners and researchers for the efficient use of resources and the transition to the circular economy in construction. This study employed Lytag aggregate, an environmentally friendly pulverized fuel ash-based lightweight aggregate, as a substitute for natural coarse aggregate. At the same time, fly ash, an industrial by-product, was used as a partial substitute for cement. Concrete mix M20 was experimented with using fly ash and Lytag lightweight aggregate. The percentages of fly ash that make up the replacements were 5%, 10%, 15%, 20%, and 25%. The Compressive Strength (CS), Split Tensile Strength (STS), and deflection were discovered at these percentages after 56 days of testing. The concrete cube, cylinder, and beam specimens were examined in the explorations, as mentioned earlier. The results indicate that a 10% substitution of cement with fly ash and a replacement of coarse aggregate with Lytag lightweight aggregate produced concrete that performed well in terms of mechanical properties and deflection. The cementitious composites have varying characteristics as the environment changes. Therefore, understanding their mechanical properties are crucial for safety reasons. CS, STS, and deflection are the essential property of concrete. Machine learning (ML) approaches have been necessary to predict the CS of concrete. The Artificial Fish Swarm Optimization (AFSO), Particle Swarm Optimization (PSO), and Harmony Search (HS) algorithms were investigated for the prediction of outcomes. This work deftly explains the tremendous AFSO technique, which achieves the precise ideal values of the weights in the model to crown the mathematical modeling technique. This has been proved by the minimum, maximum, and sample median, and the first and third quartiles were used as the basis for a boxplot through the standardized method of showing the dataset. It graphically displays the quantitative value distribution of a field. The correlation matrix and confidence interval were represented graphically using the corrupt method.

Estimating the Return Flow of Irrigation Water for Paddies Using Hydrology-Hydraulic Modeling (수리·수문해석 모델을 활용한 농업용수 회귀수량 추정)

  • Shin, Ji-Hyeon;Nam, Won-Ho;Yoon, Dong-Hyun;Yang, Mi-Hye;Jung, In-Kyun;Lee, Kwang-Ya
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.6
    • /
    • pp.1-13
    • /
    • 2023
  • Irrigation return flow plays an important role in river flow forecasting, basin water supply planning, and determining irrigation water use. Therefore, accurate calculation of irrigation return flow rate is essential for the rational use and management of water resources. In this study, EPA-SWMM (Environmental Protection Agency-Storm Water Management Model) modeling was used to analyze the irrigation return flow and return flow rate of each intake work using irrigation canal network. As a result of the EPA-SWMM, we tried to estimate the quick return flow and delayed return flow using the water supply, paddy field, drainage, infiltration, precipitation, and evapotranspiration. We selected 9 districts, including pumping stations and weirs, to reflect various characteristics of irrigation water, focusing on the four major rivers (Hangang, Geumgang, Nakdonggang, Yeongsangang, and Seomjingang). We analyzed the irrigation period from May 1, 2021 to September 10, 2021. As a result of estimating the irrigation return flow rate, it varied from approximately 44 to 56%. In the case of the Gokseong Guseong area with the highest return flow rate, it was estimated that the quick return flow was 4,677 103 m3 and the delayed return flow was 1,473 103 m3 , with a quick return flow rate of 42.6% and a delayed return flow rate of 13.4%.

Development of a Web Platform System for Worker Protection using EEG Emotion Classification (뇌파 기반 감정 분류를 활용한 작업자 보호를 위한 웹 플랫폼 시스템 개발)

  • Ssang-Hee Seo
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.6
    • /
    • pp.37-44
    • /
    • 2023
  • As a primary technology of Industry 4.0, human-robot collaboration (HRC) requires additional measures to ensure worker safety. Previous studies on avoiding collisions between collaborative robots and workers mainly detect collisions based on sensors and cameras attached to the robot. This method requires complex algorithms to continuously track robots, people, and objects and has the disadvantage of not being able to respond quickly to changes in the work environment. The present study was conducted to implement a web-based platform that manages collaborative robots by recognizing the emotions of workers - specifically their perception of danger - in the collaborative process. To this end, we developed a web-based application that collects and stores emotion-related brain waves via a wearable device; a deep-learning model that extracts and classifies the characteristics of neutral, positive, and negative emotions; and an Internet-of-things (IoT) interface program that controls motor operation according to classified emotions. We conducted a comparative analysis of our system's performance using a public open dataset and a dataset collected through actual measurement, achieving validation accuracies of 96.8% and 70.7%, respectively.

Hydrogeological characteristics of the LILW disposal site (처분부지의 수리지질 특성)

  • Kim, Kyung-Su;Kim, Chun-Soo;Bae, Dae-Seok;Ji, Sung-Hoon;Yoon, Si-Tae
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.4
    • /
    • pp.245-255
    • /
    • 2008
  • Korea Hydro and Nuclear Power Company(KHNP) conducted site investigations for a low and intermediate-level nuclear waste repository in the Gyeong Ju site. The site characterization work constitutes a description of the site, its regional setting and the current state of the geosphere and biosphere. The main objectives of hydogeological investigation aimed to understand the hydrogeological setting and conditions of the site, and to provide the input parameters for safety evaluation. The hydogeological characterization of the site was performed from the results of surface based investigations, i.e geological mapping and analysis, drilling works and hydraulic testing, and geophysical survey and interpretation. The hydro-structural model based on the hydrogeological characterization consists of one-Hydraulic Soil Domain, three-Hydraulic Rock Domains and five-Hydraulic Conductor Domains. The hydrogeological framework and the hydraulic values provided for each hydraulic unit over a relevant scale were used as the baseline for the conceptualization and interpretation of flow modeling. The current hydrogeological characteristics based on the surface based investigation include some uncertainties resulted from the basic assumption of investigation methods and field data. Therefore, the reassessment of hydrostructure model and hydraulic properties based on the field data obtained during the construction is necessitated for a final hydrogeological characterization.

  • PDF