• 제목/요약/키워드: safety of ductility based seismic design

검색결과 18건 처리시간 0.025초

원형 철근콘크리트 교각에 대한 연성도 내진설계법의 안전성 (Safety of Ductility Demand Based Seismic Design for Circular RC Bridge Columns)

  • 이재훈;황정길;최진호
    • 콘크리트학회논문집
    • /
    • 제20권2호
    • /
    • pp.193-202
    • /
    • 2008
  • 현행 도로교설계기준의 내진설계기준은 완전연성 설계 개념을 채택함으로써, 과도하게 배근되는 횡구속철근으로 인하여 현장 시공에 어려움을 겪는 사례가 많이 있다. 이것은 한반도와 같은 중 약진직역에서 완전연성이 필요하지 않는 경우가 일반적임에도 불구하고 완전연성을 확보하기 위한 심부 구속철근량이 배근되기 때문이다. 이와 같은 문제점을 해결하기 위한 방안으로 한정연성 설계개념을 도입한 연성도 내진설계법이 제안된 바 있다. 연성도 내진설계법에서는 재료강도와 함께 소요연성도와 형상비를 변수로 하여 횡구속철근량을 결정하는 산정식을 사용하고 있다. 본 논문은 횡구속철근 산정식을 중심으로 연성도 내진설계법의 안전성을 검증함을 목적으로 한다. 국내 외에서 수행된 89개의 원형단면 기둥 실험 결과를 대상으로 변위연성도 안전율을 검토한 결과 1.11$\sim$3.98 사이의 값을 보였으며, 평균 변위연성도 안전율은 1.90으로 충분한 안전율을 보였다. 이 논문에서는 또한 연성도 내진설계법의 구체적인 설계절차도 소개하였으며, 횡구속철근의 설계에 고려되는 주요 변수들이 변위연성도 안전율에 주는 영향도 분석하였다.

횡구속 콘크리트의 압축 응력-변형률 모델 : Part I. 원형단면 부재 (Stress-Strain Model for Laterally Confined Concrete : Part I. Circular Sectional Members)

  • 선창호;정혁창;김익현
    • 한국지진공학회논문집
    • /
    • 제21권1호
    • /
    • pp.49-57
    • /
    • 2017
  • In order to avoid collapse of bridges in earthquakes bridge piers are generally designed to attain sufficient ductility. This full-ductility design method has merits for securing the seismic safety readily against strong earthquakes but, it has weakness of high cost design because of excessive safety margin. Recently, in many countries with high seismic technologies, the seismic design concept tends to shift from the collapse prevention design to the performance-based one which requires different performance (damage) levels according to the structural importance. In order to establish this performance-based design method the displacement ductility of confined concrete members should be evaluated quantitatively. And the stress-strain model of confined concrete is indispensible in evaluating displacement ductility. In this study, 6 test groups with different lateral reinforcement ratios were prepared. 10 same specimens with circular section for each group were tested to obtain more reliable test results. The characteristic values necessary for composing the stress-strain model were obtained from experiments. Based on these characteristic values the new stress-strain model modifying the Hoshikuma's one has been proposed.

Seismic vulnerability evaluation of a 32-story reinforced concrete building

  • Memari, A.M.;Motlagh, A.R. Yazdani;Akhtari, M.;Scanlon, A.;Ashtiany, M. Ghafory
    • Structural Engineering and Mechanics
    • /
    • 제7권1호
    • /
    • pp.1-18
    • /
    • 1999
  • Seismic evaluation of a 32-story reinforced concrete framed tube building is performed by checking damageability, safety, and toughness limit states. The evaluation is based on Standard 2800 (Iranian seismic code) which recommends equivalent lateral static force, modal superposition, or time history dynamic analysis methods to be applied. A three dimensional linearly elastic model checked by ambient vibration test results is used for the evaluation. Accelerograms of three earthquakes as well as linearly elastic design response spectra are used for dynamic analysis. Damageability is checked by considering story drift ratios. Safety is evaluated by comparing demands and capacities at the story and element force levels. Finally, toughness is studied in terms of curvature ductility of members. The paper explains the methodology selected and various aspects in detail.

프리캐스트 중공 사각형 철근콘크리트 교각의 내진성능 (Seismic Performance of Hollow Rectangular Precast Segmental Piers)

  • 이재훈;박동규;최진호;신성진
    • 콘크리트학회논문집
    • /
    • 제24권6호
    • /
    • pp.705-714
    • /
    • 2012
  • 프리캐스트 중공 사각형 철근콘크리트 교각에 대하여 준정적 실험을 수행하여 내진성능을 검증하였다. 기둥 실험체는 프리캐스트 세그먼트를 접합하고 나서, 미리 배치된 쉬스관에 축방향 철근을 연결 없이 연속으로 배치한 후 모르타르로 그라우팅하는 방법으로 제작하였다. 실험의 주요변수는 형상비, 축방향 철근비, 횡방향 철근량, 프리캐스트 세그먼트의 접합위치이다. 기둥 실험체의 형상비는 4.5와 2.5, 축방향 철근비는 1.15%와 3.07%로 각각 두 가지의 값을 가진다. 횡방향 철근량은 도로교설계기준에서 규정하고 있는 완전연성 설계에 요구되는 양의 99%, 55%, 50%, 27%로 배근되었다. 소성힌지 구역에서의 프리캐스트 세그먼트 접합위치는 기둥 하단에서 기둥단면 두께의 0.5배와 1.0배인 위치로 하였다. 실험 결과로서 균열 및 파괴모드, 축력-휨 강도, 하중-변위 포락선, 변위연성도를 분석하였으며, 도로교설계기준의 연성도 내진설계법을 적용하였을 때의 안전율을 분석하였다. 기둥 실험체는 축방향 철근이 모르타르와 쉬스관에 의하여 구속되고, 쉬스관이 횡방향 철근으로 구속되는 구조로 인하여 큰 변위까지 축방향 철근의 좌굴이 지연되어 연성도가 크게 나타났다.

변위연성도 기반 원형철근콘크리트 교각의 내진성능 평가 (Displacement Ductility Based Seismic Performance Evaluation of Circular RC Bridge Piers)

  • 박창규;이대형;윤상철;정영수
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2006년도 학술발표회 논문집
    • /
    • pp.276-283
    • /
    • 2006
  • Korea is considered to be immune from the earthquake hazard because it is located far away from the active fault. However, recent earthquake caused a loss of lives and economical loss worldwide. Hence there has been raised an importance of the earthquake resistant design for various infrastructures. In this research, the seismic design and evaluation criterion for RC bridge pier were proposed from the experimental results of 82 circular RC bridge piers tested in domestic and aboard. New seismic criterion was introduced the limited ductile design provision suitable to Korean peninsula, which would be classified as a low or moderate seismic region. In addition, further important topic for the seismic safety of RC bridge piers in Korea is the seismic performance enhancement of RC bridge piers, which were designed and constructed before the 1992 seismic design provision. Therefore, the proposed seismic performance evaluation criterion could be very useful to judge seismic retrofit need or not according to the residual seismic performance of the RC bridge piers. Also, it could reduce an uncertainty for the safety of the infrastructure under earthquakes.

  • PDF

Collapse response assessment of low-rise buildings with irregularities in plan

  • Manie, Salar;Moghadam, Abdoreza S.;Ghafory-Ashtiany, Mohsen
    • Earthquakes and Structures
    • /
    • 제9권1호
    • /
    • pp.49-71
    • /
    • 2015
  • The present paper aims at evaluating damage and collapse behavior of low-rise buildings with unidirectional mass irregularities in plan (torsional buildings). In previous earthquake events, such buildings have been exposed to extensive damages and even total collapse in some cases. To investigate the performance and collapse behavior of such buildings from probabilistic points of view, three-dimensional three and six-story reinforced concrete models with unidirectional mass eccentricities ranging from 0% to 30% and designed with modern seismic design code provisions specific to intermediate ductility class were subjected to nonlinear static as well as extensive nonlinear incremental dynamic analysis (IDA) under a set of far-field real ground motions containing 21 two-component records. Performance of each model was then examined by means of calculating conventional seismic design parameters including the response reduction (R), structural overstrength (${\Omega}$) and structural ductility (${\mu}$) factors, calculation of probability distribution of maximum inter-story drift responses in two orthogonal directions and calculation collapse margin ratio (CMR) as an indicator of performance. Results demonstrate that substantial differences exist between the behavior of regular and irregular buildings in terms of lateral load capacity and collapse margin ratio. Also, results indicate that current seismic design parameters could be non-conservative for buildings with high levels of plan eccentricity and such structures do not meet the target "life safety" performance level based on safety margin against collapse. The adverse effects of plan irregularity on collapse safety of structures are more pronounced as the number of stories increases.

Sustainable retrofit design of RC frames evaluated for different seismic demand

  • Zerbin, Matteo;Aprile, Alessandra
    • Earthquakes and Structures
    • /
    • 제9권6호
    • /
    • pp.1337-1353
    • /
    • 2015
  • Seismic upgrading of existing structures is a technical and social issue aimed at risk reduction. Sustainable design is one of the most important challenges in any structural project. Nowadays, many retrofit strategies are feasible and several traditional and innovative options are available to engineers. Basically, the design strategy can lead to increase structural ductility, strength, or both of them, but also stiffness regulation and supplemental damping are possible strategies to reduce seismic vulnerability. Each design solution has different technical and economical performances. In this paper, four different design solutions are presented for the retrofit of an existing RC frame with poor concrete quality and inadequate reinforcement detailing. The considered solutions are based on FRP wrapping of the existing structural elements or alternatively on new RC shear walls introduction. This paper shows the comparison among the considered design strategies in order to select the suitable solution, which reaches the compromise between the obtained safety level and costs during the life-cycle of the building. Each solution is worked out by considering three different levels of seismic demand. The structural capacity of the considered retrofit solutions is assessed with nonlinear static analysis and the seismic performance is evaluated with the capacity spectrum method.

Seismic behavior of K-type eccentrically braced frames with high strength steel based on PBSD method

  • Li, Shen;Wang, Chao-yu;Li, Xiao-lei;Jian, Zheng;Tian, Jian-bo
    • Earthquakes and Structures
    • /
    • 제15권6호
    • /
    • pp.667-685
    • /
    • 2018
  • In eccentrically braced steel frames (EBFs), the links are fuse members which enter inelastic phase before other structure members and dissipate the seismic energy. Based on the force-based seismic design method, damages and plastic deformations are limited to the links, and the main structure members are required tremendous sizes to ensure elastic with limited or no damage. Force-based seismic design method is very common and is found in most design codes, it is unable to determine the inelastic response of the structure and the damages of the members. Nowadays, methods of seismic design are emphasizing more on performance-based seismic design concept to have a more realistic assessment of the inelastic response of the structure. Links use ordinary steel Q345 (the nominal yielding strength $f_y{\geq}345MPa$) while other members use high strength steel (Q460 $f_y{\geq}460MPa$ or Q690 $f_y{\geq}690MPa$) in eccentrically braced frames with high strength steel combination (HSS-EBFs). The application of high strength steels brings out many advantages, including higher safety ensured by higher strength in elastic state, better economy which results from the smaller member size and structural weight as well as the corresponding welding work, and most importantly, the application of high strength steel in seismic fortification zone, which is helpful to popularize the extensive use of high strength steel. In order to comparison seismic behavior between HSS-EBFs and ordinary EBFs, on the basis of experimental study, four structures with 5, 10, 15 and 20 stories were designed by PBSD method for HSS-EBFs and ordinary EBFs. Nonlinear static and dynamic analysis is applied to all designs. The loading capacity, lateral stiffness, ductility and story drifts and failure mode under rare earthquake of the designs are compared. Analyses results indicated that HSS-EBFs have similar loading capacity with ordinary EBFs while the lateral stiffness and ductility of HSS-EBFs is lower than that of EBFs. HSS-EBFs and ordinary EBFs designed by PBSD method have the similar failure mode and story drift distribution under rare earthquake, the steel weight of HSS-EBFs is 10%-15% lower than ordinary EBFs resulting in good economic efficiency.

확률론적 지진위험도 분석을 위한 원전 격납건물의 비탄성에너지 흡수계수 평가 (Inelastic Energy Absorption Factor for the Seismic Probabilistic Risk Assessment of NPP Containment Structure)

  • 최인길;서정문
    • 한국지진공학회논문집
    • /
    • 제5권5호
    • /
    • pp.47-56
    • /
    • 2001
  • 원전 격납건물은 내진 안정성을 확보하기 위해 설계단계에서 여유나 보수성을 부여하게 된다. 원전 구조물의 내진성능 평가는 이러한 여유나 보수성을 배제한 실질적인 성능 및 응답을 기준으로 평가하게 된다. 본 연구에서는 내진성능 평가에 고려되는 구조물의 성능 및 응답관련 계수들 중 그 기여도가 비교적 큰 비탄성 에너지 흡수계수의 산정방법에 대한 비교를 수행하였다. 또한 각종 방법에 따라 산정된 비탄성 에너지 흡수계수에 따른 HCLPF(high confidence of low probability of failure)값의 변화를 분석하였다. 연구결과 원전 격납건물의 비탄성 에너지 흡수계수는 1.5~1.75로 나타났다. 구조물의 내진성능을 명확히 평가하기 위해서는 먼저 구조물의 비선형 거동 및 연성도를 정확히 평가하여야 함을 알 수 있다.

  • PDF

근거리지진의 특성과 동적응답스펙트럼에 관한 연구 (A Study on Characteristics and Dynamic Response Spectrum of Near Fault Ground Motions)

  • 방명석;한성호
    • 한국안전학회지
    • /
    • 제20권3호
    • /
    • pp.143-151
    • /
    • 2005
  • In this study, it is demonstrated that how the effect of the Near Fault Ground Motion affects the response of the structure. Considering the general characteristic of Near Fault Ground Motion the characteristics of Near Fault Ground Motions is analysed by elastic response spectrums, and the inelastic response spectrum is evaluated with the ductility and the yield strength to consider the inelastic behavior which couldn't be simulated through the elastic response spectrum. The result of this study shows that the effect of Near Fault Ground Motion should be considered in the long period range of long span structures but the domestic seismic design code was developed based on Far Fault Ground Motions, so the effects of Near Fault Ground Motions, which is very serious especially in large structures with a long period, are not considered. Therefore, the effect of the Near Fault Ground Motion has to be examined especially in the seismic performance evaluation of long period structure.