• Title/Summary/Keyword: safety net

Search Result 1,568, Processing Time 0.024 seconds

Using artificial intelligence to detect human errors in nuclear power plants: A case in operation and maintenance

  • Ezgi Gursel ;Bhavya Reddy ;Anahita Khojandi;Mahboubeh Madadi;Jamie Baalis Coble;Vivek Agarwal ;Vaibhav Yadav;Ronald L. Boring
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.603-622
    • /
    • 2023
  • Human error (HE) is an important concern in safety-critical systems such as nuclear power plants (NPPs). HE has played a role in many accidents and outage incidents in NPPs. Despite the increased automation in NPPs, HE remains unavoidable. Hence, the need for HE detection is as important as HE prevention efforts. In NPPs, HE is rather rare. Hence, anomaly detection, a widely used machine learning technique for detecting rare anomalous instances, can be repurposed to detect potential HE. In this study, we develop an unsupervised anomaly detection technique based on generative adversarial networks (GANs) to detect anomalies in manually collected surveillance data in NPPs. More specifically, our GAN is trained to detect mismatches between automatically recorded sensor data and manually collected surveillance data, and hence, identify anomalous instances that can be attributed to HE. We test our GAN on both a real-world dataset and an external dataset obtained from a testbed, and we benchmark our results against state-of-the-art unsupervised anomaly detection algorithms, including one-class support vector machine and isolation forest. Our results show that the proposed GAN provides improved anomaly detection performance. Our study is promising for the future development of artificial intelligence based HE detection systems.

Remote handling systems for the Selective Production of Exotic Species (SPES) facility

  • Giordano Lilli ;Lisa Centofante ;Mattia Manzolaro ;Alberto Monetti ;Roberto Oboe;Alberto Andrighetto
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.378-390
    • /
    • 2023
  • The SPES (Selective Production of Exotic Species) facility, currently under development at Legnaro National Laboratories of INFN, aims at the production of intense RIB (Radioactive Ion Beams) employing the Isotope Separation On-Line (ISOL) technique for interdisciplinary research. The radioactive isotopes of interest are produced by the interaction of a multi-foil uranium carbide target with a 40 MeV 200 μA proton beam generated by a cyclotron proton driver. The Target Ion Source (TIS) is the core of the SPES project, here the radioactive nuclei, mainly neutron-rich isotopes, are stopped, extracted, ionized, separated, accelerated and delivered to specific experimental areas. Due to efficiency reasons, the TIS unit needs to be replaced periodically during operation. In this highly radioactive environment, the employment of autonomous systems allows the manipulation, transport, and storage of the TIS unit without the need for human intervention. A dedicated remote handling infrastructure is therefore under development to fulfill the functional and safety requirement of the project. This contribution describes the layout of the SPES target area, where all the remote handling systems operate to grant the smooth operation of the facility avoiding personnel exposure to a high dose rate or contamination issues.

Assessment of the core-catcher in the VVER-1000 reactor containment under various severe accidents

  • Farhad Salari;Ataollah Rabiee;Farshad Faghihi
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.144-155
    • /
    • 2023
  • The core catcher is used as a passive safety system in new generation nuclear power plants to create a space in the containment for the placing and cooling of the molten corium under various severe accidents. This research investigates the role of the core catcher in the VVER-1000 reactor containment system in mitigating the effects of core meltdown under various severe accidents within the context of the Ex-vessel Melt Retention (EVMR) strategy. Hence, a comparison study of three severe accidents is conducted, including Station Black-Out (SBO), SBO combined with the Large Break Loss of Coolant Accident (LB-LOCA), and SBO combined with the Small Break Loss of Coolant Accident (SB-LOCA). Numerical comparative simulations are performed for the aforementioned scenario with and without the EX-vessel core-catcher. The results showed that considering the EX-Vessel core catcher reduces the amount of hydrogen by about 18.2 percent in the case of SBO + LB-LOCA, and hydrogen production decreases by 12.4 percent in the case of SBO + SB-LOCA. Furthermore, in the presence of an EX-Vessel core-catcher, the production of gases such as CO and CO2 for the SBO accident is negligible. It was revealed that the greatest decrease in pressure and temperature of the containment is related to the SBO accident.

Raman spectroscopy of eutectic melting between boride granule and stainless steel for sodium-cooled fast reactors

  • Hirofumi Fukai;Masahiro Furuya;Hidemasa Yamano
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.902-907
    • /
    • 2023
  • To understand the eutectic reaction mechanism and the relocation behavior of the core debris is indispensable for the safety assessment of core disruptive accidents (CDAs) in sodium-cooled fast reactors (SFRs). This paper addresses reaction products and their distribution of the eutectic melting/solidifying reaction of boron carbide (B4C) and stainless-steel (SS). The influence of the existence of carbon on the B4C-SS eutectic reaction was investigated by comparing the iron boride (FeB)-SS reaction by Raman spectroscopy with Multivariate Curve Resolution (MCR) analysis. The scanning electron microscopy with dispersive X-ray spectrometer was also used to investigate the elemental information of the pure metals such as Cr, Ni, and Fe. In the B4C-SS samples, a new layer was formed between B4C/SS interface, and the layer was confirmed that the formed layer corresponded to amorphous carbon (graphite) or FeB or Fe2B. In contrast, a new layer was not clearly formed between FeB and SS interface in the FeB-SS samples. All samples observed the Cr-rich domain and Fe and Ni-rich domain after the reaction. These domains might be formed during the solidifying process.

Techno-economic assessment of a very small modular reactor (vSMR): A case study for the LINE city in Saudi Arabia

  • Salah Ud-Din Khan;Rawaiz Khan
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1244-1249
    • /
    • 2023
  • Recently, the Kingdom of Saudi Arabia (KSA) announced the development of first-of-a-kind(FOAK) and most advanced futuristic vertical city and named as 'The LINE'. The project will have zero carbon dioxide emissions and will be powered by clean energy sources. Therefore, a study was designed to understand which clean energy sources might be a better choice. Because of its nearly carbon-free footprint, nuclear energy may be a good choice. Nowadays, the development of very small modular reactors (vSMRs) is gaining attention due to many salient features such as cost efficiency and zero carbon emissions. These reactors are one step down to actual small modular reactors (SMRs) in terms of power and size. SMRs typically have a power range of 20 MWe to 300 MWe, while vSMRs have a power range of 1-20 MWe. Therefore, a study was conducted to discuss different vSMRs in terms of design, technology types, safety features, capabilities, potential, and economics. After conducting the comparative test and analysis, the fuel cycle modeling of optimal and suitable reactor was calculated. Furthermore, the levelized unit cost of electricity for each reactor was compared to determine the most suitable vSMR, which is then compared other generation SMRs to evaluate the cost variations per MWe in terms of size and operation. The main objective of the research was to identify the most cost effective and simple vSMR that can be easily installed and deployed.

Investigation of condensation with non-condensable gas in natural circulation loop for passive safety system

  • Jin-Hwa Yang;Tae-Hwan Ahn;Hwang Bae;Hyun-Sik Park
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.1125-1139
    • /
    • 2023
  • The system-integrated modular advanced reactor 100 (SMART100), an integral-type pressurized water small modular reactor, is based on a novel design concept for containment cooling and radioactive material reduction; it is known as the containment pressure and radioactivity suppression system (CPRSS). There is a passive cooling system using a condensation with non-condensable gas in the SMART CPRSS. When a design basis accident such as a small break loss of coolant accident (SBLOCA) occurs, the pressurized low containment area (LCA) of the SMART CPRSS leads to steam condensation in an incontainment refuelling water storage tank (IRWST). Additionally, the steam and non-condensable gas mixture passes through the CPRSS heat exchanger (CHX) submerged in the emergency cooldown tank (ECT) that can partially remove the residual heat. When the steam and non-condensable gas mixture passes through the CHX, the non-condensable gas can interrupt the condensation heat transfer in the CHX and it degrades CHX performance. In this study, condensation heat transfer experiments of steam and non-condensable gas mixture in the natural circulation loop were conducted. The pressure, temperature, and effects of the non-condensable gas were investigated according to the constant inlet steam flow rate with non-condensable gas injections in the loop.

BEPU analysis of a CANDU LBLOCA RD-14M experiment using RELAP/SCDAPSIM

  • A.K. Trivedi;D.R. Novog
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1448-1459
    • /
    • 2023
  • A key element of the safety analysis is Loss of Coolant Analysis (LOCA) which must be performed using system thermal-hydraulic codes. These codes are extensively validated against separate effect and integral experiments. RELAP/SCDAPSIM is one such code that may be used to predict LBLOCA response in a CANDU reactor. The RD-14M experiment selected for the Best Estimate Plus Uncertainty study is a 44 mm (22.7%) inlet header break test with no Emergency Coolant Injection. This work has two objectives first is to simulate pipe break with RELAP and compare these results to those available from experiment and from comparable TRACE calculations. The second objective is to quantify uncertainty in the fuel element sheath (FES) temperature arising from model coefficient as well as input parameter uncertainties using Integrated Uncertainty Analysis package. RELAP calculated results are found to be in good agreement with those of TRACE and with those of experiments. The base case maximum FES temperature is 335.5 ℃ while that of 95% confidence 95th percentile is 407.41 ℃ for the first order Wilk's formula. The experimental measurements fall within the predicted band and the trends and sensitivities are similar to those reported for the TRACE code.

Research on diagnosis method of centrifugal pump rotor faults based on IPSO-VMD and RVM

  • Liang Dong ;Zeyu Chen;Runan Hua;Siyuan Hu ;Chuanhan Fan ;xingxin Xiao
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.827-838
    • /
    • 2023
  • Centrifugal pump is a key part of nuclear power plant systems, and its health status is critical to the safety and reliability of nuclear power plants. Therefore, fault diagnosis is required for centrifugal pump. Traditional fault diagnosis methods have difficulty extracting fault features from nonlinear and non-stationary signals, resulting in low diagnostic accuracy. In this paper, a new fault diagnosis method is proposed based on the improved particle swarm optimization (IPSO) algorithm-based variational modal decomposition (VMD) and relevance vector machine (RVM). Firstly, a simulation test bench for rotor faults is built, in which vibration displacement signals of the rotor are also collected by eddy current sensors. Then, the improved particle swarm algorithm is used to optimize the VMD to achieve adaptive decomposition of vibration displacement signals. Meanwhile, a screening criterion based on the minimum Kullback-Leibler (K-L) divergence value is established to extract the primary intrinsic modal function (IMF) component. Eventually, the factors are obtained from the primary IMF component to form a fault feature vector, and fault patterns are recognized using the RVM model. The results show that the extraction of the fault information and fault diagnosis classification have been improved, and the average accuracy could reach 97.87%.

Cavitation state identification of centrifugal pump based on CEEMD-DRSN

  • Cui Dai;Siyuan Hu;Yuhang Zhang;Zeyu Chen;Liang Dong
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1507-1517
    • /
    • 2023
  • Centrifugal pumps are a crucial part of nuclear power plants, and their dependable and safe operation is crucial to the security of the entire facility. Cavitation will cause the centrifugal pump to violently vibration with the large number of vacuoles generated, which not only affect the hydraulic performance of the centrifugal pump but also cause structural damage to the impeller, seriously affecting the operational safety of nuclear power plants. A closed cavitation test bench of a centrifugal pump is constructed, and a method for precisely identifying the cavitation state is proposed based on Complementary Ensemble Empirical Mode Decomposition (CEEMD) and Deep Residual Shrinkage Network (DRSN). First, we compared the cavitation sensitivity of pressure fluctuation, vibration, and liquid-borne noise and decomposed the liquid-borne noise by CEEMD to capture cavitation characteristics. The decomposition results are sent into a 12-layer deep residual shrinkage network (DRSN) for cavitation identification training. The results demonstrate that the liquid-borne noise signal is the most cavitation-sensitive signal, and the accuracy of CEEMD-DRSN to identify cavitation at different stages of centrifugal pumps arrives at 94.61%

Dynamic data validation and reconciliation for improving the detection of sodium leakage in a sodium-cooled fast reactor

  • Sangjun Park;Jongin Yang;Jewhan Lee;Gyunyoung Heo
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1528-1539
    • /
    • 2023
  • Since the leakage of sodium in an SFR (sodium-cooled fast reactor) causes an explosion upon reaction with air and water, sodium leakages represent an important safety issue. In this study, a novel technique for improving the reliability of sodium leakage detection applying DDVR (dynamic data validation and reconciliation) is proposed and verified to resolve this technical issue. DDVR is an approach that aims to improve the accuracy of a target system in a dynamic state by minimizing random errors, such as from the uncertainty of instruments and the surrounding environment, and by eliminating gross errors, such as instrument failure, miscalibration, or aging, using the spatial redundancy of measurements in a physical model and the reliability information of the instruments. DDVR also makes it possible to estimate the state of unmeasured points. To validate this approach for supporting sodium leakage detection, this study applies experimental data from a sodium leakage detection experiment performed by the Korea Atomic Energy Research Institute. The validation results show that the reliability of sodium leakage detection is improved by cooperation between DDVR and hardware measurements. Based on these findings, technology integrating software and hardware approaches is suggested to improve the reliability of sodium leakage detection by presenting the expected true state of the system.