• Title/Summary/Keyword: safety management systems

Search Result 1,877, Processing Time 0.024 seconds

Design of Safety Control & Management Model Based on Intranet Environment (인트라넷 기반 안전관리 시스템 모델 설정)

  • 이승환;나승훈;김형준;강경식
    • Proceedings of the Safety Management and Science Conference
    • /
    • 1999.11a
    • /
    • pp.481-486
    • /
    • 1999
  • As the manufacturing systems adapt information technology, safety control and management systems are required to adapt information technology by changing the industrial environment. This paper is presented the methodology of designing the safety control and management system based on intranetwork environment to reduce breakdown time on facility and Increase efficience of safety training and education.

  • PDF

Theoretical Review and Comparison Study On Safety Management System (안전경영시스템에 대한 이론적 고찰 및 비교 연구)

  • 김광태;정수일
    • Journal of the Korea Safety Management & Science
    • /
    • v.3 no.2
    • /
    • pp.13-23
    • /
    • 2001
  • These days, there are many companies who are concerned with "Safety Management System"", which enables them to not only evaluate their safety but also control and prevent the risk of accidents. As plenty of institutes are developing and providing it for companies in addition to testing its operation, such companies take that system into account in a very positive way. This paper makes it possible for our company to introduce an appropriate program into its workplace by comparing and analyzing such Safety Management Evaluation Systems.uation Systems.

  • PDF

Safety Ontology Modeling and Verification on MIS of Ship-Building and Repairing Enterprise

  • Wu, Yumei;Li, Zhen;Zhao, LanJie;Yu, Zhengwei;Miao, Hong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.4
    • /
    • pp.1360-1388
    • /
    • 2021
  • Shipbuilding and repairing enterprise has the characteristics of many hazards and accidents. Therefore, the safety management ability of shipbuilding and repairing MIS (management information system) must be effectively guaranteed. The verification on safety management is the necessary measure to ensure and improve the safety management ability of MIS. Safety verification can not only increase the safety of MIS, but also make early warning of potential risks in management to avoid the accidents. Based on the authoritative standards in the field of safety in shipbuilding and repairing enterprise, this paper applied modeling and verification method based on ontology to safety verification of MIS, extracted the concepts and associations from related safety standards to construct axiom set to support safety verification on MIS of shipbuilding and repairing enterprise. Then, this paper developed the corresponding safety ontology modeling and verification tool-SOMVT. By the application and comparison of two examples, this paper effectively verified the safety of MIS to prove the modeling method and the SOMVT can improve the safety of MIS in a much more effective and stable way to traditional manual analysis.

Development of the ISEP Based on Systems Engineering (시스템엔지니어링을 적용한 ISEP 개발에 관한 연구)

  • Byun, BoSuk;Choi, YoChul;Park, Young T.
    • Journal of Korean Society for Quality Management
    • /
    • v.41 no.4
    • /
    • pp.725-735
    • /
    • 2013
  • Purpose: The purpose of this study is to propose an Integrated Safety Evaluation Process (ISEP) that can enhances the safety aspect of the safety-critical system. This process utilizes the advantages of the iterative Systems Engineering process combined with the safety assessment process that is commonly and well defined in many standards and/or guidelines for railway, aerospace, and other safety-critical systems. Methods: The proposed process model is based on the predefined system lifecycle, in each phase of which the appropriate safety assessment activities and the safety data are identified. The interfaces between Systems Engineering process and the safety assessment process are identified before the two processes are integrated. For the integration, the elements at lower level of Systems Engineering process are combined with the relevant elements of safety assessment process. This combined process model is represented as Enhanced Functional Flow Block Diagram (EFFBD) by using CORE(R) that is commercial modelling tool. Results: The proposed model is applied to the lifecycle and management process of the United States aircraft system. The US aircraft systems engineering process are composed of twelve key elements, among which the requirements management, functional analysis, and Synthesis processes are considered for examplenary application of the proposed process. To synchronize the Systems Engineering process and the safety assessment process, the Systems Engineering milestones are utilized, where the US aircraft system has thirteen milestones. Taking into account of the nine steps in the maturity level, the integrated process models are proposed in some phases of lifecycle. The flows of processes are simulated using CORE(R), confirming the flows are timelined without any conflict between the Systems Engineering process and the safety assessment process. Conclusion: ISEP allows the timeline analysis for identifying activity and data flows. Also, the use of CORE(R) is shown to be effective in the management and change of process data, which helps for the ISEP to apply for the development of safety critical system. In this study, only the first few phases of lifecyle are considered, however, the implementation through operation phases can be revised by combining the elements of safety activities regarding those phases.

Development of Expertise-based Safety Performance Evaluation Model

  • Yoo, Wi Sung;Lee, Ung-Kyun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.2
    • /
    • pp.159-168
    • /
    • 2013
  • Construction projects have become increasingly complex in recent years, resulting in substantial safety hazards and frequent fall accidents. In an attempt to prevent fall accidents, various safety management systems have been developed. These systems have mainly been evaluated qualitatively and subjectively by practitioners or supervisors, and there are few tools that can be used to quantitatively evaluate the performance of safety management systems. We propose an expertise-based safety performance evaluation model (EXSPEM), which integrates a fuzzy approach-based analytic hierarchy process and a regression approach. The proposed model uses S-shaped curves to represent the degree of contribution by subjective expertise and is verified by a genetic algorithm. To illustrate its practical application, EXSPEM was applied to evaluate the safety performance of a newly developed real-time mobile detector monitoring system. It is expected that this model will be a helpful tool for systematically evaluating the application of a robust safety control and management system in a complex construction environment.

On Enhancing Test and Evaluation Process of Weapon Systems Development using DSM-Based Risk and Safety Management (DSM기법에 의한 위험 및 안전 관리를 통해 무기체계 시험평가 프로세스의 개선에 관한 연구)

  • Sim, Sang Hyun;Lee, Jae-Chon
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.2
    • /
    • pp.89-96
    • /
    • 2015
  • The weapon systems development has some distinct characteristics in that a big size of government budget (derived from national tax) has been expended frequently and the completion of the development projects seems to take long. Thus, the impact of the potential changes in the required operational capability on the development activities can induce some type of project risks. As such, proper management of project risk has been one of crucial subjects in the weapon systems development. Although a variety of methods can be considered, an approach based on the test and evaluation (T&E) process has been selected in this paper in order to appropriately handle those potential risks. In the study of the underlying T&E process, the safety consideration (for instance, explosiveness) of weapon systems is also included. To achieve the objective of the paper, a step-by-step procedure is first presented in the analysis of the T&E process. Then, to pursue some enhancement on the process, a set of necessary and useful activities are added in terms of risk and safety management. The resultant process is further analyzed and tailored based on a design structure matrix method. The case study of a tank development is also discussed.

Research on Importance-Performance Analysis of Smart Construction Safety Management System (스마트 건설안전관리시스템의 중요도-성과도 분석 연구)

  • Jong-Yil Park;Chang-Hee Yun
    • Journal of the Korea Safety Management & Science
    • /
    • v.26 no.2
    • /
    • pp.43-53
    • /
    • 2024
  • This study analyzes the importance-performance analysis (IPA) of the 10 dimensions of the smart construction safety management system, and analyzes which dimensions are important and which dimensions are performing to determine key improvement tasks, incremental improvement tasks, Maintenance and reinforcement tasks and continuous maintenance tasks were derived. Among the 10 dimensions of the smart construction safety management system, the dimensions that are recognized as important by all field managers and field workers and have high performance are the automatic risk displacement measurement system, smart environmental sensor system, and heavy equipment seizure prevention system. However, areas that were perceived as having high importance but low performance were worker location tracking systems, smart safety helmet chin muscles, and smart safety ring fastening. Among the smart construction safety management systems perceived by field managers, areas for key improvement with high importance and low performance included worker location tracking system and smart safety ring fastening. Among the smart construction safety management systems perceived by field workers, the area for key improvement with high importance and low performance was the automatic risk displacement measurement system.

A Study on the Improvement of Safety Management at the Construction Stage using Design for Safety Results - Focusing on the Connection between Design for Safety and Safety Management Plan (설계 안전성 검토 결과를 활용한 시공단계 안전관리 업무 개선 - 설계 안전성 검토와 안전관리계획의 연계를 중심으로)

  • Lee, Goon Jae
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.6
    • /
    • pp.54-60
    • /
    • 2020
  • Recently, the issue of construction safety is growing. In the construction industry, accidents have continued to increase since 2000. In particular, the number of accident deaths at small and medium-sized construction sites accounts for 72.11% of the total number of accident deaths in the construction industry. For construction safety, prior safety evaluation systems such as Design for safety and safety management plan preparation are in place. However, at construction sites, these systems are recognized as formal legal documents, and their effectiveness is greatly reduced. Therefore, in this study, a linkage model that links design safety review information and safety management plan information was presented so that the safety management plan can be efficiently established. In addition, the effectiveness of the proposed process was verified as an example of actual work. The linkage model will contribute to improving the safety management environment at the site by increasing the productivity of safety management work by enabling easy sharing of risk factor information in the construction stage safety management work. The results of this study will be used as basic information for the development of the integrated safety management system.

A Study on Certification & Adoption of Occupational Health & Safety Management Systems in Korea (산업안전보건경영시스템의 인증 및 도입에 관한 연구)

  • 하정호;윤석준;강경식
    • Journal of the Korea Safety Management & Science
    • /
    • v.5 no.3
    • /
    • pp.21-30
    • /
    • 2003
  • This study was intended to help workplaces set up an occupational health & safety management system by investigating the certification of the system and by conducting a questionnaire to survey the necessity, purpose, effect and promotion of the system. The occupational health & safety management systems generally adopted in Korea are OHSAS 18001 and K-OHSMS 18001, which are the PDCA model, such like the quality and environment management system. Because these standards have a compatibility with other management systems, individual or integral certification is available. A telephone questionnaire was conducted with 30 workplaces in Kyeonggi Province and Incheon Metropolitan City, which have been certified for the occupational health & safety management systems (OHSAS 18001, KOSHA 2000, and/or K -OHSMS 18001). About 92 percent of them were large-sized workplaces with over 500 employees. For the question on the necessity of the system, most of the respondent answered very necessary. The purposes of the certification were to control the risks in safety and health, to have a systematic approach for accident prevention and sustainable improvement, and to comply with a range of regulations voluntarily, in that order. Most of the answers to the question on the effect of the system were prevention of accident. For the question on the promotion of the system, the most prominent answer was reduction in the workers compensation rate.

Evaluation of the Quality of Occupational Health and Safety Management Systems Based on Key Performance Indicators in Certified Organizations

  • Mohammadfam, Iraj;Kamalinia, Mojtaba;Momeni, Mansour;Golmohammadi, Rostam;Hamidi, Yadollah;Soltanian, Alireza
    • Safety and Health at Work
    • /
    • v.8 no.2
    • /
    • pp.156-161
    • /
    • 2017
  • Background: Occupational Health and Safety Management Systems are becoming more widespread in organizations. Consequently, their effectiveness has become a core topic for researchers. This paper evaluates the performance of the Occupational Health and Safety Assessment Series 18001 specification in certified companies in Iran. Methods: The evaluation is based on a comparison of specific criteria and indictors related to occupational health and safety management practices in three certified and three noncertified companies. Results: Findings indicate that the performance of certified companies with respect to occupational health and safety management practices is significantly better than that of noncertified companies. Conclusion: Occupational Health and Safety Assessment Series 18001-certified companies have a better level of occupational health and safety; this supports the argument that Occupational Health and Safety Management Systems play an important strategic role in health and safety in the workplace.