• Title/Summary/Keyword: safety factor of slope

Search Result 434, Processing Time 0.024 seconds

Stability Analysis of the Unsaturated Infinite Slope Considering Suction Stress under Steady Infiltration Condition (정상침투조건에서 흡입응력을 고려한 불포화 무한사면의 안정해석)

  • Song, Young-Suk
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.9
    • /
    • pp.5-15
    • /
    • 2013
  • In this paper, the unsaturated slope stability analysis considering suction stress (Lu and Godt, 2008) was introduced and the results applied for a certain sand slope were analyzed. The unsaturated slope stability analysis considering suction stress can analyze both conditions of steady infiltration and no infiltration, and it can estimate the safety factor of slope as a function of soil depth. Also, the influence of weathering phenomenon at a certain depth from the ground surface can be considered. The stability analysis considering suction stress was applied to the unsaturated infinite slope composed of sand with the relative density of 60%. The suction stress under no infiltration condition was affected by ground water table until a certain influencing depth. However, the suction stress under steady infiltration condition was affected by seepage throughout the soils. Especially, the maximum suction stress was displayed around ground surface. The factor of safety in the infinite slope under no infiltration condition rapidly increased and decreased within the influence zone of ground water table. As a result of slope stability analysis, the factor of safety is less than 1 at the depth of 2.4 m below the ground surface. It means that the probability of slope failure is too high within the range of depths. The factor of safety under steady infiltration condition is greater than that under no infiltration condition due to the change of suction stress induced by seepage. As the steady infiltration rate of precipitation was getting closer to the saturated hydraulic conductivity, the factor of safety decreased. In case of the steady infiltration rate of precipitation with $-1.8{\times}10^{-3}cm/s$, the factor of safety is less than 1 at the depths between 0.2 m and 3 m below the ground surface. It means that the probability of slope failure is too high within the range of depths, and type of slope failure is likely to be shallow landslides.

Unsaturated Soil Mechanics for Slope Stability

  • Rahardjo, Harianto;Satyanaga, Alfrendo;Leong, Eng-Choon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2007.09a
    • /
    • pp.481-501
    • /
    • 2007
  • Excessive rainfalls due to climatic changes can trigger an increase in rainfall-induced slope failures that pose real threats to both lives and properties. Many high slopes in residual soils could stand at a steep angle, but failed during or after rainfall. Commonly, these slopes have a deep groundwater table and negative pore-water pressures in the unsaturated zone above the groundwater table contribute to the shear strength of soil and consequently to factor of safety of the slope. Stability assessment of slope under rainfall requires information on rate of rainwater infiltration in the unsaturated zone and the resulting changes in pore-water pressure and shear strength of soil. This paper describes the application of unsaturated soil mechanics principles and theories in the assessment of rainfall effect on stability of slope through proper characterization of soil properties, measurement of negative pore-water pressures, seepage and slope stability analyses involving unsaturated and saturated soils. Factors controlling the rate of changes in factor of safety during rainfall and a preventive method to minimize infiltration are highlighted in this paper.

  • PDF

A numerical study on the influence of small underground cavities for estimation of slope safety factor (소규모 지하공동이 사면안전율 산정에 미치는 영향에 관한 수치해석 연구)

  • An, Joon-Sang;Kang, Kyung-Nam;Song, Ki-Il;Kim, Byung-Chan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.5
    • /
    • pp.621-640
    • /
    • 2019
  • Quantitative stability assessment of underground cavities can be presented as a factor of safety based on the Shear Strength Reduction Method (SSRM). Also, SSRM is one of the stability evaluation methods commonly used in slope stability analysis. However, there is a lack of research that considers the relationship between the probability of occurrence of cavities in the ground and the potential failure surface of the slope at the same time. In this study, the effect of small underground cavities on the failure behavior of the slope was analyzed by using SSRM. Considering some of the glaciology studies, there is a case that suggests that there is a cavity effect inside the glacier in the condition that the glacier slides. In this study, the stability evaluation of underground cavities and slope stability analysis, where SSRM is used in geotechnical engineering field, was carried out considering simultaneous conditions. The slope stability analysis according to the shape and position change of underground cavities which are likely to occur in the lower part of a mountain road was analyzed by using SSRM in FLAC3D software and the influence of underground cavities on the slope factor of safety was confirmed. If there are underground cavities near slope potential failure surface, it will affect the calculation of a factor of safety. The results of this study are expected to be basic data on slope stability analysis with small underground cavities.

The Variation of Slope Stability by Ground Water Level in Railway Lines (지하수위에 따른 철도사면의 안정성 변화)

  • Kim, Hyun-Ki;Shin, Min-Ho;Shin, Ji-Soo
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.789-795
    • /
    • 2008
  • Slope stability is affected by various factors. For safety management of slopes, monitoring systems have been widely constructed along railway lines. The representative data from the systems are variations of ground profile such like ground water level and pore water pressure etc. and direct displacement measured by ground clinometer and tension wire sensor. Slopes are mainly effected by rainfall and rainfall causes the decrease of factor of safety(FOS). Because FOS varies linearly by the variation of ground water level and pore pressure, it has a weak point that could not define the time and proper warning sign to secure the safety of the train. In this study, alternative of FOS such as reliability index and probability of failure is applied to slope stability analysis introducing the reliability concept. FOS, reliability index, probability of failure and velocity of probability of failure of the slopes by variation of ground water level are investigated for setting up the specification of safety management of slopes. By executing case study of a slope(ILLO-IMSUNGLI), it is showed to be applied to specification of safety management.

  • PDF

Modeling Study for Effects of Hydrothermal Clay Vein on Slope Stability (열수변질 점토맥이 사면 안정성에 미치는 영향에 관한 모델링 연구)

  • Jo, Hwan-Ju;Jo, Ho-Young;Jeong, Kyung-Mun
    • Economic and Environmental Geology
    • /
    • v.43 no.2
    • /
    • pp.185-196
    • /
    • 2010
  • Clay veins that occurred in a slope by hydrothermal alteration, can significantly affect its slope stability. The effect of clay veins on the slope stability was investigated by numerical modeling study. Various parameters such as cohesion, internal friction angle, orientation, groundwater level, rainfall intensity and duration, have been modelled. As shear strength increased, factor of safety increased. As groundwater level developed, factor of safety decreased. For the case of slip surface developed on interface, factor of safety was lower than that for case of slip surface developed on either weathered soil or clay vein. The effect of various soil types of the slope stability was also investigated by simulating seepage through the slopes with various soils. The groundwater level significantly increased on the slopes with silty and generic soils. For the slope with sandy soil, almost no change in groundwater level was observed due to rapid drainage.

Experimental Study on the Slope Failure of Embankment (성토사면의 붕괴에 관한 실험적 연구)

  • 강우묵;이달원;지인택;조재홍
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.35 no.3
    • /
    • pp.47-62
    • /
    • 1993
  • The laboratorv model test was carried out to investigate the behavior of pore water pressure, the critical amount of rainfall for slope failure, the pattern of failure, and the variation of seepage line at the slope with the uniform material of embankment by changing the slope angles and rainfall intensities. The results were was summarised as follows : 1.At the beginning stage of rainfall, the negative pore pressure appeared at the surface of slope and the positive pore pressure at the deep parts. But, the negative one turned into the positive one as the rainfall continued and this rapidly increased about 50 to 100 minutes before the slope failure. 2.The heavier the rainfall intensity, the shorter the time, and the milder the slope, the longer the time took to reach the failure of slope. 3.As the angle of the slope became milder, the critical amount of rainfall for slope failure became greater. 4.Maximum pore water pressure was 10 to 40g/cm$^2$ at the toe of slope and 50 to 90g/cm$^2$at the deep parts. 5.In the respect of the pattern of slope failure, surface failure of slope occurred locally at the toe of slope at the A-soil and failure of slope by surface flow occurred gradually at the top part of slope at the B-soil. 6.As the rainfall continued and the saturation zone in the embankment was formed, the seepage line went rapidly up and also the time to reach the total collapse of slope took longer at the B-soil. 7.As the position of the seepage line went up and the strength parameter accordingly down, the safety factor was 2.108 at the A-soil and 2.150 at the B-soil when the slope occured toe failure. Minimum safety factor was rapidly down to 0.831 at the A-soil and to 0.936 at the B-soil when the slope collapsed totally at the top part of slope.

  • PDF

The expanded LE Morgenstern-Price method for slope stability analysis based on a force-displacement coupled mode

  • Deng, Dong-ping;Lu, Kuan;Wen, Sha-sha;Li, Liang
    • Geomechanics and Engineering
    • /
    • v.23 no.4
    • /
    • pp.313-325
    • /
    • 2020
  • Slope displacement and factor of safety (FOS) of a slope are two aspects that reflect the stability of a slope. However, the traditional limit equilibrium (LE) methods only give the result of the slope FOS and cannot be used to solve for the slope displacement. Therefore, developing a LE method to obtain the results of the slope FOS and slope displacement has significance for engineering applications. Based on a force-displacement coupled mode, this work expands the LE Morgenstern-Price (M-P) method. Except for the mechanical equilibrium conditions of a sliding body adopted in the traditional M-P method, the present method introduces a nonlinear model of the shear stress and shear displacement. Moreover, the energy equation satisfied by a sliding body under a small slope displacement is also applied. Therefore, the double solutions of the slope FOS and horizontal slope displacement are established. Furthermore, the flow chart for the expanded LE M-P method is given. By comparisons and analyses of slope examples, the present method has close results with previous research and numerical simulation methods, thus verifying the feasibility of the present method. Thereafter, from the parametric analysis, the following conclusions are obtained: (1) the shear displacement parameters of the soil affect the horizontal slope displacement but have little effect on the slope FOS; and (2) the curves of the horizontal slope displacement vs. the minimum slope FOS could be fitted by a hyperbolic model, which would be beneficial to obtain the horizontal slope displacement for the slope in the critical state.

The study of Cut-slop failure characteristics caused by typhoon' MAEMI' (태풍 매미에 의한 절토사면의 대규모 붕괴 특성 연구)

  • Jung, Young-Kook;Chang, Buhm-Soo;Shin, Chang-Gun;Lee, Yeon-Hee;Park, Sun-Kyu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.643-650
    • /
    • 2004
  • In general, slope failures are occurred by the interaction among various factors(slope shape, hydraulic condition, and geologic condition, etc.). In the area where has a heavy rainfall, a great portion of slope failures are caused by seepage increasement with suitable failure condition. Many studies have been performed to find the cause of large-scale failures. In this study, three Cut-Slope failures caused by typhoon 'MAEMI' were investigated to find out factors causing large-scale slope failures. It was confirmed in this research that major reason of slope failures was the weak layer working along with other unstable factor. The large-scaled investigation concerning Cut-Slope will be needed to find out the Weak Layer.

  • PDF

Stability Analysis of Embankment Slopes Consisting of Rock Fragments (암석 버력으로 성토한 사면의 안정성 해석)

  • 김치환
    • Tunnel and Underground Space
    • /
    • v.12 no.2
    • /
    • pp.83-91
    • /
    • 2002
  • Stability analysis of rocky embankment slopes is done by both the limit equilibrium method and the finite difference method. The height or the rocky embankment is approximately 40 m and the side slope is 1 vertical to 1.5 horizontal. The cohesion and internal friction angle of rock debris are assumed zero and 43$^{\circ}$, respectively. For finite difference analysis, strength reduction method is used to calculate the saft factor of the slope. As a result, the safety factor of the slope is discovered to be 1.4 by using either methods. Considering that the design criteria of the safety factor is 1.3, it can be judged that the rock fragments embankment slope is in a stable state.

Slope Stability Analysis of Filldams by Modified Seismic Intensity Method (수정진도법에 의한 댐사면 안정해석)

  • 신동훈;이종욱
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.223-228
    • /
    • 2000
  • The current slope stability analysis of a filldam is based on the limit equilibrium method, and in calculation of safety factor during earthquake, adopts the seismic intensity method in which it considers a uniform seismic force from dam foundation to crest. However the observed behaviour of filldam during earthquake shows some different behaviour in that at the crest the measured acceleration is usually several times the ground acceleration. In this study, slope stability calculations of a filldam are provided based on the modified seismic intensity method, which can take into account the amplification phenomena of acceleration in the upper part of dam. And also the results of calculations are compared with that of current seismic intensity method.

  • PDF