• Title/Summary/Keyword: safe use

Search Result 2,035, Processing Time 0.031 seconds

Study on the Empirical Awareness Analysis of Navigational Officers on the Evaluation of Ship Stability (선박 복원성 평가에 관한 항해사의 경험적 인지도 분석 연구)

  • Hong-Beom Kim;Young-Joong Ahn;Yun-Sok Lee;Chang-Hyun Jung;Gil-Young Kong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.4
    • /
    • pp.325-331
    • /
    • 2023
  • The navigational officer's knowledge about securing stability, an essential factor for promoting the safe operation of ships, should be improved along with advancement in ship technology, such as the large-sized ships and the appearance of autonomous ships. Accordingly, this study conducted a survey on stability, targeting navigational officers, and analyzed empirical awareness using general characteristics. Navigational officers had a high level of understanding of the stability criteria for a higher rank, but lacked the understanding of the special criteria for specific ship types. Of the total respondents, 87.6% were using a loading computer to evaluate stability. The GM scored the highest (3.891/5.000 points) as a method of evaluating stability on the ship. Further, whether the stability was secured was determined based on the GM and stability criteria. Most navigational officers replenish additional ballast water to improve the stability and use a small angle of rudder in the case of lacking stability. The results of this study are intended to be used as important data for improving education and research on operator-centered stability in the future by evaluating the empirical awareness of navigational officers on the ship stability.

The Effect of Indoor Wood Environment on Depression and Anxiety (실내 목재환경이 우울 및 불안에 미치는 영향)

  • Park, Yena;Hwang, Jihyun;Chae, Jeong-ho
    • Anxiety and mood
    • /
    • v.18 no.2
    • /
    • pp.56-64
    • /
    • 2022
  • Objective : Creating a psychologically stable indoor environment is a significant factor in modern life. This study was conducted to confirm which type of wood interior decorating environment was beneficial for improving depression and anxiety. Methods : A total of 59 participants will randomly assign to each accommodation by dividing the rest of the three setting with the same structure with 0% wood interior decorating environment, 45% wood environment, and 90% wood environment. The Psychological evaluation measured at three time points, was before exposure to the wood environment (T1), 45 minutes after exposure to the wood environment (T2), and 20 hours after exposure to the wood environment (T3). Results : As a result of examining the effect of the wood interior use ratio on psychological variables, After about 20 hours (T3), there were significant differences in mood state_vigor-activity(𝛘2=7.253, p<0.05), mood state_tension-anxiety (𝛘2=7.041, p<0.05), mood state_anger-hostility(𝛘2=8.318, p<0.05), and state anxiety (𝛘2=7.680, p<0.05). State anxiety also showed a significant difference in T2 (𝛘2=8.811, p<.05). As a result of analyzing the effect on satisfaction and subjective impression, there was a significant difference in satisfaction (𝛘2=6.300, p<0.05) and 'pleasant (𝛘2=6.930, p<0.05), airy (𝛘2=6.628, p<0.05), masculine (𝛘2=6.906, p<0.05), ordinary(𝛘2=6.662, p<0.05), natural (𝛘2=13.924, p<0.001), calm (𝛘2=13.106, p<0.001), safe (𝛘2=7.755, p<0.05)'. Conclusion : The wood interior decorating environment had a positive effect on anxiety and mood, such as lowering depressive and anxious mood and increasing positive changes and as the ratio of wood decoration increased, it had a greater positive effect on emotions.

Utilization of Drone LiDAR for Field Investigation of Facility Collapse Accident (붕괴사고 현장조사를 위한 드론 LiDAR 활용)

  • Yonghan Jung ;Eontaek Lim ;Jaewook Suk;Seul Koo;Seongsam Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_2
    • /
    • pp.849-858
    • /
    • 2023
  • Investigating disaster sites such as earthquakes and landslides involves significant risks due to potential secondary disasters like facility collapse. In situations where direct access is challenging, there is a need to develop methods for safely acquiring high-precision 3D disaster information using light detection and ranging (LiDAR) equipped drone survey systems. In this study, the feasibility of using drone LiDAR in disaster scenarios was examined, focusing on the collapse accident at Jeongja Bridge in Bundang-gu, Seongnam City, in April 2023. High-density point clouds for the accident bridge were collected, and the bridge's 3D terrain information was reconstructed and compared to the measurement performance of 10 ground control points. The results showed horizontal and vertical root mean square error values of 0.032 m and 0.055 m, respectively. Additionally, when compared to a point cloud generated using ground LiDAR for the same target area, a vertical difference of approximately 0.08 m was observed, but overall shapes showed minimal discrepancies. Moreover, in terms of overall data acquisition and processing time, drone LiDAR was found to be more efficient than ground LiDAR. Therefore, the use of drone LiDAR in disaster sites with significant risks allows for safe and rapid onsite investigations.

Development of Functional Halogenated Phenylpyrrole Derivatives (기능성 할로겐화 페닐피롤 )

  • Min-Hee Jung;Hee Jeong Kong;Young-Ok Kim;Jin-Ho Lee
    • Journal of Life Science
    • /
    • v.33 no.10
    • /
    • pp.842-850
    • /
    • 2023
  • Pyrrolnitrin, pyrrolomycin, and pyoluteorin are functional halogenated phenylpyrrole derivatives (HPDs) derived from microorganisms with diverse antimicrobial activities. Pyrrolnitrin is a secondary metabolite produced from L-tryptophan through four-step reactions in Pseudomonas fluorescens, Burkholderia cepacia, Serratia plymuthica, etc. It is currently used for the treatment of superficial dermatophytic fungal infections, has high antagonistic activities against soil-borne and foliar fungal infections, and has many industrial applications. Since pyrrolnitrin is easily decomposed by light, it is difficult to widely use it outdoors. As an alternative, fludioxonil, a synthetically produced non-systemic surface fungicide that is structurally similar and has excellent light stability, has been commercialized for seed and foliar treatment of plants. However, due to its high toxicity to aquatic organisms and adverse effects in human cell lines, many countries have established maximum residue levels and strictly control its levels. Pyrrolomycin and pyoluteorin, which have antibiotic/antibiofilm activity against Gram-positive bacteria and high anti-oomycete activity against the plant pathogen Pythium ultimum, respectively, were isolated and identified from microorganisms. This review summarizes the biosynthesis and production of natural pyrrolnitrin derived from bacteria and the characteristics of synthetic fludioxonil and other natural phenylpyrrole derivatives among the HPDs. We expect that a plethora of highly effective, novel HPDs that are safe for humans and environments will be developed through the generation of an HPD library by microbial biosynthesis and chemical synthesis.

A Research on Applicability of Drone Photogrammetry for Dam Safety Inspection (드론 Photogrammetry 기반 댐 시설물 안전점검 적용성 연구)

  • DongSoon Park;Jin-Il Yu;Hojun You
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.5
    • /
    • pp.30-39
    • /
    • 2023
  • Large dams, which are critical infrastructures for disaster prevention, are exposed to various risks such as aging, floods, and earthquakes. Better dam safety inspection and diagnosis using digital transformation technologies are needed. Traditional visual inspection methods by human inspectors have several limitations, including many inaccessible areas, danger of working at heights, and know-how based subjective inspections. In this study, drone photogrammetry was performed on two large dams to evaluate the applicability of digital data-based dam safety inspection and propose a data management methodology for continuous use. High-quality 3D digital models with GSD (ground sampling distance) within 2.5 cm/pixel were generated by flat double grid missions and manual photography methods, despite reservoir water surface and electromagnetic interferences, and severe altitude differences ranging from 42 m to 99.9 m of dam heights. Geometry profiles of the as-built conditions were easily extracted from the generated 3D mesh models, orthomosaic images, and digital surface models. The effectiveness of monitoring dam deformation by photogrammetry was confirmed. Cracks and deterioration of dam concrete structures, such as spillways and intake towers, were detected and visualized efficiently using the digital 3D models. This can be used for safe inspection of inaccessible areas and avoiding risky tasks at heights. Furthermore, a methodology for mapping the inspection result onto the 3D digital model and structuring a relational database for managing deterioration information history was proposed. As a result of measuring the labor and time required for safety inspection at the SYG Dam spillway, the drone photogrammetry method was found to have a 48% productivity improvement effect compared to the conventional manpower visual inspection method. The drone photogrammetry-based dam safety inspection is considered very effective in improving work productivity and data reliability.

Deep Learning-Based Algorithm for the Detection and Characterization of MRI Safety of Cardiac Implantable Electronic Devices on Chest Radiographs

  • Ue-Hwan Kim;Moon Young Kim;Eun-Ah Park;Whal Lee;Woo-Hyun Lim;Hack-Lyoung Kim;Sohee Oh;Kwang Nam Jin
    • Korean Journal of Radiology
    • /
    • v.22 no.11
    • /
    • pp.1918-1928
    • /
    • 2021
  • Objective: With the recent development of various MRI-conditional cardiac implantable electronic devices (CIEDs), the accurate identification and characterization of CIEDs have become critical when performing MRI in patients with CIEDs. We aimed to develop and evaluate a deep learning-based algorithm (DLA) that performs the detection and characterization of parameters, including MRI safety, of CIEDs on chest radiograph (CR) in a single step and compare its performance with other related algorithms that were recently developed. Materials and Methods: We developed a DLA (X-ray CIED identification [XCID]) using 9912 CRs of 958 patients with 968 CIEDs comprising 26 model groups from 4 manufacturers obtained between 2014 and 2019 from one hospital. The performance of XCID was tested with an external dataset consisting of 2122 CRs obtained from a different hospital and compared with the performance of two other related algorithms recently reported, including PacemakerID (PID) and Pacemaker identification with neural networks (PPMnn). Results: The overall accuracies of XCID for the manufacturer classification, model group identification, and MRI safety characterization using the internal test dataset were 99.7% (992/995), 97.2% (967/995), and 98.9% (984/995), respectively. These were 95.8% (2033/2122), 85.4% (1813/2122), and 92.2% (1956/2122), respectively, with the external test dataset. In the comparative study, the accuracy for the manufacturer classification was 95.0% (152/160) for XCID and 91.3% for PPMnn (146/160), which was significantly higher than that for PID (80.0%,128/160; p < 0.001 for both). XCID demonstrated a higher accuracy (88.1%; 141/160) than PPMnn (80.0%; 128/160) in identifying model groups (p < 0.001). Conclusion: The remarkable and consistent performance of XCID suggests its applicability for detection, manufacturer and model identification, as well as MRI safety characterization of CIED on CRs. Further studies are warranted to guarantee the safe use of XCID in clinical practice.

Development of Evaluation Indicators for Optimizing Mixed Traffic Flow Using Complexed Multi-Criteria Decision Approaches (다기준 복합 가중치 결정 기반 혼재 교통류 최적화 평가지표 개발)

  • Donghyeok Park;Nuri Park;Donghee Oh;Juneyoung Park
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.2
    • /
    • pp.157-172
    • /
    • 2024
  • Autonomous driving technology, when commercialized, has the potential to improve the safety, mobility, and environmental performance of transportation networks. However, safe autonomous driving may be hindered by poor sensor performance and limitations in long-distance detection. Therefore, cooperative autonomous driving that can supplement information collected from surrounding vehicles and infrastructure is essential. In addition, since HDVs, AVs, and CAVs have different ranges of perceivable information and different response protocols, countermeasures are needed for mixed traffic that occur during the transition period of autonomous driving technology. There is a lack of research on traffic flow optimization that considers the penetration rate of autonomous vehicles and the different characteristics of each road segment. The objective of this study is to develop weights based on safety, operational, and environmental factors for each infrastructure control use case and autonomous vehicle MPR. To develop an integrated evaluation index, infra-guidance AHP and hybrid AHP weights were combined. Based on the results of this study, it can be used to give right of way to each vehicle to optimize mixed traffic.

Synergistic Inhibition of Burkitt's Lymphoma with Combined Ibrutinib and Lapatinib Treatment (Ibrutinib과 Lapatinib 병용 치료에 의한 버킷림프종의 상호 작용적 억제)

  • Chae-Eun YANG;Se Been KIM;Yurim JEONG;Jung-Yeon LIM
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.55 no.4
    • /
    • pp.298-305
    • /
    • 2023
  • Burkitt's lymphoma is a distinct subtype of non-Hodgkin's lymphoma originating from B-cells that is notorious for its aggressive growth and association with immune system impairments, potentially resulting in rapid and fatal outcomes if not addressed promptly. Optimizing the use of Food and Drug Administration-approved medications, such as combining known safe drugs, can lead to time and cost savings. This method holds promise in accelerating the progress of novel treatments, ultimately facilitating swifter access for patients. This study explores the potential of a dual-targeted therapeutic strategy, combining the bruton tyrosine kinase-targeting drug Ibrutinib and the epidermal growth factor receptor/human epidermal growth factor receptor-2-targeting drug Lapatinib. Ramos and Daudi cell lines, well-established models of Burkitt's lymphoma, were used to examine the impact of this combination therapy. The combination of Ibrutinib and Lapatinib inhibited cell proliferation more than using each drug individually. A combination treatment induced apoptosis and caused cell cycle arrest at the S and G2/M phases. This approach is multifaceted in its benefits. It enhances the efficiency of the drug development timeline and maximizes the utility of currently available resources, ensuring a more streamlined and resource-effective research process.

Radiofrequency Ablation of Hepatocellular Carcinoma (≤ 5 cm) with Saline-Perfused Electrodes: Factors Affecting Local Tumor Progression (5 cm 이하의 간암에서 식염수 주입방식 전극을 이용한 고주파 소작술: 국소 재발에 영향을 미치는 인자)

  • Dong Ho Kim;Dong Jin Chung;Se Hyun Cho;Joon-Yeol Han
    • Journal of the Korean Society of Radiology
    • /
    • v.81 no.3
    • /
    • pp.620-631
    • /
    • 2020
  • Purpose We aimed to assess local tumor progression (LTP) rate and associated prognostic factors in 92 patients who underwent radiofrequency ablation (RFA) using saline-perfused electrodes to treat hepatocellular carcinoma (HCC) (≤ 5 cm). Materials and Methods Total 92 patients with 148 HCCs were treated with RFA using saline-perfused electrodes, from 2009 to 2015. We retrospectively evaluated technical success, technique efficacy, and LTP rates. Potential prognostic factors for LTP were perivascular tumor, subphrenic tumor, artificial ascites, tumor size (≥ 2 cm), and previous treatment of transarterial chemoembolization. Analysis was performed by lesion, rather than by person. Results During follow-up period from 1 to 97.4 months, total cumulative LTP rates were 7.9%, 11.4%, and 14.6% at 1, 3, and 5 years, respectively. These values were significantly higher in the perivascular (35.1%; p = 0.009) and subphrenic group (38.9%; p = 0.002) at 5-year. We did not observe any significant difference in LTP according to other prognostic factors (p > 0.05). Conclusion RFA with saline-perfused electrode is a safe and effective treatment modality for HCC (≤ 5 cm), with lower LTP rates. Nevertheless, perivascular and subphrenic HCCs demonstrated higher LTP rate than other sites. It is imperative to note that perivascular and subphrenic location of HCC are associated with a high risk of local recurrence, despite the use of saline-perfused electrodes.

Implementation of A Vibration Notification System to Support Driving for Drivers with Cognitive Delay Impairment

  • Gyu-Seok Lee;Tae-Sung Kim;Myeong-Chul Park
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.4
    • /
    • pp.115-123
    • /
    • 2024
  • In this paper, we propose a vibration notification system that combines navigation information and wearable bands to ensure safe driving for the transportation vulnerable. This system transmits navigation driving information to a linked application, converts it into a vibration signal, and provides notifications through a wearable band. Existing navigation systems focus on providing route guidance and location information, so the driver's concentration is dispersed, and safety and convenience are deteriorated, especially for those with mobility impairments, due to standard vision and delayed recognition of stimuli, resulting in an increasingly high traffic accident rate. To solve this problem, navigation driving information is converted into vibration signals through a linked application, and vibration notifications for events, left turns, right turns, and speeding are provided through a wearable band to ensure driver safety and convenience. In the future, we will use cameras and vehicle sensors to increase awareness of safety inside and outside the vehicle by adding a function that provides notifications with vibration and LED when the vehicle approaches or recognizes an object, and we will continue to conduct research to build a safer driving environment. plan.