• Title/Summary/Keyword: safe distance

Search Result 466, Processing Time 0.023 seconds

Proposal and Analysis of DMR Process with Hydrofluorocarbon Refrigerants (Hydrofluorocarbon 냉매를 적용한 DMR 공정 제안 및 분석)

  • Park, Jinwoo;Lee, Inkyu;Shin, Jihyun;Moon, Il
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.1
    • /
    • pp.62-67
    • /
    • 2016
  • Natural gas, one of the cleanest fossil fuel, is liquefied to reduce its volume for the long distance transportation. Small size floating liquefied natural gas plant has small area that safe issue is highly considered. However, Dual Mixed Refrigerants (DMR) process has fire potential by using flammable refrigerants and N2 Expander process has low compressed energy efficiency which has high inherent process safety. Therefore, safe process with high compressed energy efficiency is constantly needed. This study suggested an alternative refrigerants to existing DMR process by using Hydrofluorocarbon which has high safety due to its non-flammable properties. As a result, it showed 34.8% lower compressed energy efficiency than DMR process that contains fire potential whereas 42.6% improved compressed energy efficiency than Single N2 Expander process. In conclusion, this research proposed safe process for small size floating liquefied natural gas plant while having high efficiency.

The Quantitative Analysis on the Criterion Elements for Collision Avoidance Action in Collision Avoidance maneuver and Its Application (피항조선시의 피항개시기준요소의 양적파악 및 그 이용에 관한 연구)

  • 김기윤
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.35 no.1
    • /
    • pp.25-34
    • /
    • 1999
  • The Steering and Sailing Rules of International Regulation for Preventing Collisions at Sea now in use direct actions to avoid collision when two power-driven vessels are meeting on reciprocal or nearly reciprocal courses so as to involve risk of collision. But these rules do not refer to the minimum relative distances and safety relative distances between two vessels when they should take such actions.In this paper the ship's collision avoiding actions being analyzed from a viewpoint of ship motions, the mathematical formulas to calculate such relative distances necessary for taking actions to avoid collision were worked out. The values of maneuvering indices being figured out through experiments of 20 actual ships of small, medium, large and mammoth size and applied to calculating formulas, the minimum relative distances and safety relative distances were calculated. The main results were as follows. 1. It was confirmed that the criterion elements for collision avoiding actions in head-on situation of two vessels shall be the minimum relative distances and safety relative distances between them. 2. On the assumption that two vessels same in size and condition were approaching each other in head-on situation, the minimum relative distance of small vessel(GT : 160~650tons) was found to be about 4.7 times her own length, and those of medium (GT:2,300~4,500tons),large(GT:15,000~62,000tons) and mommoth (GT:91,000~194,000tons) vessels were found to be about 5.2 times, about 5.2 times and about 6.1 times their own lengths respectively. 3. On the assumption that two vessels same in size and condition were approaching each other in head-on situation, the safe relative distance of small vessel (GT : 160~650tons) was found to be about 6.8 times her own length, and those of medium (GT : 2,300~4,500tons), large (GT: 15,000~62,000tons) and mammoth (GT : 91,000~194,000tons) vessels were found to be about 9.0 times, about 6.3 times, and about 8.0 times their own lengths respectively. 4. It is considered to be helpful for the safety of ship handling that the sufficient safe relative distances for every vessels shall be more than about 12~14 times which are 2 times minimum relative distance, their own length on above assumption.

  • PDF

Consideration on Limitations of Square and Cube Root Scaled Distances in Controled Blast Design (제어발파설계에서 자승근 및 삼승근 환산거리 기법의 적용한계에 대한 고찰)

  • Choi, Byung-Hee;Ryu, Chang-Ha;Jeong, Ju-Hwan
    • Explosives and Blasting
    • /
    • v.28 no.1
    • /
    • pp.27-39
    • /
    • 2010
  • Blast design equations based on the concept of scaled distances can be obtained from the statistical analysis on measured peak particle velocity data of ground vibrations. These equations represents the minimum scale distance of various recommendations for safe blasting. Two types of scaled distance widely used in Korea are the square root scaled distance (SRSD) and cube root scaled distance (CRSD). Thus, the design equations have the forms of $D/\sqrt{W}{\geq}30m/kg^{1/2}$ and $D/\sqrt[3]{W}{\geq}60m/kg^{1/3}$ in the cases of SRSD and CRSD, respectively. With these equations and known distance, we can calculate the maximum charge weight per delay that can assure the safety of nearby structures against ground vibrations. The maximum charge weights per delay, however, are in the orders of $W=O(D^2)$ and $W=O(D^3)$ for SRSD and CRSD, respectively. So, compared with SRSD, the maximum charge for CRSD increases without bound especially after the intersection point of these two charge functions despite of the similar goodness of fits. To prevent structural damage that may be caused by the excessive charge in the case of CRSD, we suggest that CRSD be used within a specified distance slightly beyond the intersection point. The exact limit is up to the point, beyond which the charge difference of SRSD and CRSD begins to exceed the maximum difference between the two within the intersection point.

A Study on the Effectiveness and Improvement of Simulation Training for Apprentice Officers

  • Lee, Myoung-ki;Park, Young-Soo;Ha, Weon-Jae
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.3
    • /
    • pp.311-318
    • /
    • 2018
  • In accordance with the stipulations of the STCW Convention, simulation training has been enforced in order to develop practical skills so as to prevent accidents by predetermining the risks in special marine environments. Simulation training is a useful way to acquire navigation abilities, and can continuously measure the ability of a trainee by applying an appropriate evaluation. However, the result of training is evaluated by the instructor's subjective judgment without quantitative criteria. Therefore, this study aims to quantitatively evaluate the effectiveness of simulation training. For this purpose, evaluation items were derived by analyzing legal standards, earlier studies, and the current status of MET institutions. The simulations were then performed three times in the same scenarios and analyzed the results. As a result, it has been shown that the objectively analyzed ability to keep the route and to make safe passage with other vessel, as well as subjectively evaluated ability by the apprentice officer has been improved as training progressed. Through the evaluation of simulation training results, it can be derived that simulation education needs supplementation, and can be provided as a basic form of data to quantify the evaluation results of the simulation training in the future.

Design and Implementation of the Remote Image Transmission System using CDMA Communication Network (CDMA 통신망을 이용한 원격 영상 전송 시스템의 설계 및 구현)

  • 박성욱;황수철;박종욱
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.7 no.3
    • /
    • pp.54-61
    • /
    • 2002
  • A remote image transmission apparatus combines robot technology and image transmission there is safe problem or place that a person can not go. Recently, control apparatus that use wire and RF between web server and robot for remote control are developed. But there is problem that must install internet line and communication distance. Transmission distance problem call solve when using the equipment of RF, but price of RF router is problem that is very high cost. In this paper, we developed remote control system using the CDMA cellular phone communication network that can control image transmission and image transmission apparatus to solve these problem. Developed system could solve defects of methods that use existent RF and internet. And could transmit the most suitable image and voice under limited condition include current communication network.

  • PDF

ASSESSMENT OF THE ANATOMIC VARIATION OF MANDIBULAR INCISIVE CANAL IN CHIN BONE HARVESTING (하악정중부에서 자가골 채취시 절치관의 해부학적인 변이에 대한 평가)

  • Kim, Ji-Hyuck;Kim, Se-Ho;Kwon, Kwang-Jun;Kim, Soung-Min;Park, Young-Wook
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.32 no.3
    • /
    • pp.226-229
    • /
    • 2006
  • The interforaminal region is usually considered as a safe region in the chin bone graft without important vital anatomical structures to be damaged. But the accurate anatomy of the interforaminal region, with its potential clinical relationships, is controversial. Moreover some complications suggesting damage of incisive terminal branches after chin bone harvesting are reported such as sensory discomfort and pain etc. In order to verify incisive innervation of symphyseal area, we examined the cross-sectional CT scan images taken for preoperative planning of implant placement with chin bone graft and some parameters were measured; (1) visuality rating of incisive canal (2) vertical and horizontal diameter of canal (3) distance from lower border of the incisive canal to the lower border of the mandible (4) shortest distance from anterior border of the incisive canal to the anterior border of the mandible. We report the positive outcome that decrease the complications related with the damages of incisive branch during bone harvesting from the chin.

A DS-UWB Radar System Based on Correlation Accumulation (상관값 누적 기반 DS-UWB 레이더 시스템)

  • Lee, Youngpo;Yoon, Seokho;Lee, Seong Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.4
    • /
    • pp.359-364
    • /
    • 2013
  • In this paper, we propose a direct sequence ultra wideband (DS-UWB) radar system based on correlation accumulation in the fields of the ship traffic control and the safe ship operation including docking guidance systems. The proposed DS-UWB radar system averages out the noise by accumulating correlator outputs, and thus, provides a reliable distance estimation performance with a shorter estimation time compared with conventional DS-UWB radar systems. From numerical results, it is confirmed that the proposed DS-UWB radar system has not only a shorter average correlation processing time, but also a better distance estimation performance.

A Study on the Forestry Safety Helmet Development Based on IoT (IoT 기반 임업용 안전모 개발에 관한 연구)

  • Nam, Ki-Hun;Park, Jung-Kyu
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.3
    • /
    • pp.419-425
    • /
    • 2020
  • There are many accident risks in logging operation of forestry such as struck by felled trees and caught in, under, or between felled trees. These accidents are primarily occurred by not keeping a safe distance between workers. According to the forestry safety instruction, workers are not supposed to go into the safety zone which is a circle with a radius of more 2 times the height of felling tree. However, this rule does not keep because of poor safety consciousness, poor sight and extreme noise of logging operation machines. This problem causes many major accidents every year. To solve this problem, we made forestry safety helmets based on IoT technology. These helmets have functions to make a visual and an acoustic alarm signal when reach the distance between workers within 20 meters. We developed the algorithm to operate the helmet's functions and conducted tests to check the functions. As a result of tests, we assured the normal system operating conditions.

Horizontal hydrodynamic coupling between shuttle tanker and FPSO arranged side-by-side

  • Wang, Hong-Chao;Wang, Lei
    • Ocean Systems Engineering
    • /
    • v.3 no.4
    • /
    • pp.275-294
    • /
    • 2013
  • Side-by-side offloading operations are widely utilized in engineering practice. The hydrodynamic interactions between two vessels play a crucial role in safe operation. This study focuses on the coupled effects between two floating bodies positioned side-by-side as a shuttle tanker-FPSO (floating production, storage and offloading) system. Several wave directions with different side-by-side distances are studied in order to obtain the variation tendency of the horizontal hydrodynamic coefficients, motion responses and mean drift forces. It is obtained that the coupled hydrodynamics between two vessels is evidently distinguished from the single body case with shielding and exaggerating effects, especially for sway and yaw directions. The resonance frequency and the peak amplitude are closely related with side-by-side separation distance. In addition, the horizontal hydrodynamics of the shuttle tanker is more susceptible to coupled effects in beam waves. It is suggested to expand the gap distance reasonably in order to reduce the coupled drift forces effectively. Attention should also be paid to the second peaks caused by hydrodynamic coupling. Since the horizontal mean drift forces are the most mainly concerned forces to be counteracted in dynamic positioning (DP) system and mooring system, prudent prediction is beneficial in saving consumed power of DP system and reducing tension of mooring lines.

An Analytical Approach to Collision Avoidance between Two Encountering Ships (교항하는 두 선박간의 충돌회피에 관한 해석적 접근)

  • Park, Jeong-Hong;Kim, Jin-Whan
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2011.11a
    • /
    • pp.21-22
    • /
    • 2011
  • In this study, an analytical algorithm for collision avoidance is proposed, which is applicable to designing collision avoidance maneuvers for two encountering ships. The minimum separation distance is defined and an appropriate maneuver sequence is computed for safe and effective collision avoidance. Two approaches: 1) collision avoidance through speed change and 2) collision avoidance through heading change, are considered, and the initiation point of the avoidance maneuver is computed analytically using the geometric configuration of the two encountering ships. To verify the feasibility of the proposed algorithm, numerical simulations are carried out using a set of ship-to-ship encountering scenarios.

  • PDF