• Title/Summary/Keyword: safe basin

Search Result 42, Processing Time 0.017 seconds

Rainfall Runoff Characteristics and Risk Assessment of Agro-chemicals Used in Golf Links (골프장에 산포되는 농약의 강우유출특성과 risk assessment)

  • ;Tohru Morioka
    • Journal of Environmental Science International
    • /
    • v.4 no.1
    • /
    • pp.19-28
    • /
    • 1995
  • A rainfall runoff model described in this paper which is based on Basin- wide Ecological Model(BAWEM) calculates the fate of afro-chemicals in a watershed located of golf links. The rainfall runoff coefficients of afro-chemicals, which are the dominant parameters to predict the movement of agro-chemicals from soil and turfgrass to downstream water, are estimated. Also, the model is used to estimate the level of health risks the residents around golf links are exposed to. The fidelity of rainfall runoff model of afro-chemicals was validated by the observed data obtained during rainy period. The calculated results from this model were found to be in the same order of that of the observed. The rainfall runoff coefficients of four agro-chemicals used in golf links were 5.4$\times$$10^{-3}$, 1.9$\times$$10^{-3}$, 3.0$\times$$10^{-4}$ and 4.4$\times$$10^{-3}$ for flutolanil, isoprothiolane, chlorpyrifos and simazine, respectively The health risk level to the residents around golf links is evaluated to be rather low:the ratio of estimated dose through drinking water to the 10% of ADI(Acceptable Daily Intake) value or VSD for 10-a life time risk varied in the range of 0.005~0.04 and 0.003~0.11, respectively, for both the annual mean and maximum monthly mean cases.

  • PDF

Experimental Study of Flip-Bucket Type Hydraulic Energy Dissipator on Steep slope Channel (긴구배수로 감세공의 Filp Bucket형 이용연구)

  • 김영배
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.13 no.1
    • /
    • pp.2206-2217
    • /
    • 1971
  • Spillway and discharge channel of reservoirs require the Control of Large volume of water under high pressure. The energies at the downstream end of spillway or discharge channel are tremendous. Therefore, Some means of expending the energy of the high-velocity flow is required to prevent scour of the riverbed, minimize erosion, and prevent undermining structures or dam it self. This may be accomplished by Constructing an energy dissipator at the downstream end of spillway or discharge channel disigned to dissipated the excessive energy and establish safe flow Condition in the outlet channel. There are many types of energy dissipators, stilling basins are the most familar energy dissipator. In the stilling basin, most energies are dissipated by hydraulic jump. stilling basins have some length to cover hydraulic jump length. So stilling basins require much concrete works and high construction cost. Flip bucket type energy dissipators require less construction cost. If the streambed is composed of firm rock and it is certain that the scour will not progress upstream to the extent that the safety of the structure might be endangered, flip backet type energy dissipators are the most recommendable one. Following items are tested and studied with bucket radius, $R=7h_2$,(medium of $4h_2{\geqq}R{\geqq}10h_2$). 1. Allowable upstream channel slop of bucket. 2. Adequate bucket lip angle for good performance of flip bucket. Also followings are reviwed. 1. Scour by jet flow. 2. Negative pressure distribution and air movement below nappe flow. From the test and study, following results were obtained. 1. Upstream channel slope of bucket (S=H/L) should be 0.25<H/L<0.75 for good performance of flip bucket. 2. Adequated lip angle $30^{\circ}{\sim}40^{\circ}$ are more reliable than $20^{\circ}{\sim}30^{\circ}$ for the safety of structures.

  • PDF